Solveeit Logo

Question

Mathematics Question on Maxima and Minima

If m and n respectively are the number of local maximum and local minimum points of the function
f(x)=0x2t25t+42+etdtf(x)=∫_0 ^{x^2} \frac{t^2–5t+4}{2+et}dt, then the ordered pair (m, n) is equal to

A

(3, 2)

B

(2, 3)

C

(2, 2)

D

(3, 4)

Answer

(2, 3)

Explanation

Solution

f(x)=0x2t25t+42+etdtf(x)=∫_0 ^{x^2} \frac{t^2–5t+4}{2+et}dt

f(x)=2x(x45x2+42+ex2)=0f'(x)=2x\bigg(\frac{x^4–5x^2+4}{2+ex^2}\bigg)=0

x=0x=0, or (x24)(x21)=0(x^2–4)(x^2–1)=0

x=0,x=±2,±1x = 0, x = ±2, ±1

Now,

f(x)=2x(x+1)(x1)(x+2)(x2)(ex2+2)f'(x)=\frac{2x(x+1)(x-1)(x+2)(x-2)}{(ex^2+2)}

changes sign from positive to negative at

x=1x = –1, 11 So, number of local maximum points = 22

changes sign from negative to positive at

x=2,0,2x = –2, 0, 2

Hence, number of local minimum points = 33

m=2,n=3∴ m = 2, n = 3