Solveeit Logo

Question

Question: If m and n are the smallest positive integers satisfying the relation \[{{\left( 2cis\dfrac{\pi }{6}...

If m and n are the smallest positive integers satisfying the relation (2cisπ6)m=(4cosπ4)n,{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}}, then (m + n) has the value equal to:
(a) 36
(b) 96
(c) 72
(d) 60

Explanation

Solution

To solve this question, first we will convert cisθcis\theta into the terms of sine and cosine by using the formula cisθ=cosθ+isinθ.cis\theta =\cos \theta +i\sin \theta . After doing this, we will get the terms like (cosθ+isinθ)t{{\left( \cos \theta +i\sin \theta \right)}^{t}} on both the sides of the equation. We will write it as (cosθ+isinθ)t=costθ+isintθ.{{\left( \cos \theta +i\sin \theta \right)}^{t}}=\cos t\theta +i\sin t\theta . Then we will compare the real and imaginary parts of the equation obtained. From here, we will get a relation between m and n. Then we will obtain another equation by putting (cosθ+isinθ)t=(eiθ)t{{\left( \cos \theta +i\sin \theta \right)}^{t}}={{\left( {{e}^{i\theta }} \right)}^{t}} in the equation obtained earlier. When we will solve both these equations, we will get the values of m and n in terms of k. When we will put k = 1, we will get the smallest value of (m + n).

Complete step-by-step answer:
While we will solve this question, we will get the values of m and n in terms of a constant. To get the minimum value, we will put the value of the constant as 1. In the above question, we have,
(2cisπ6)m=(4cosπ4)n.....(i){{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}}.....\left( i \right)
In equation (i), we are going to use the identity as shown:
(ab)n=an×bn{{\left( ab \right)}^{n}}={{a}^{n}}\times {{b}^{n}}
Thus, applying the identity in equation (i), we get the following result,
2m(cisπ6)m=4n(cisπ4)n....(ii){{2}^{m}}{{\left( cis\dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( cis\dfrac{\pi }{4} \right)}^{n}}....\left( ii \right)
In the equation (ii), we are going to use another identity as shown below,
cisθ=cosθ+isinθcis\theta =\cos \theta +i\sin \theta
Thus, after applying this identity, we get,
2m(cosπ6+isinπ6)m=4n(cosπ4+isinπ4)n.....(iii){{2}^{m}}{{\left( \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{n}}.....\left( iii \right)
In the equation (iii), we are going to use the following identity,
(cosθ+isinθ)m=cosmθ+isinmθ{{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta
Thus, we get,
2m(cosmπ6+isinmπ6)=4n(cosnπ4+isinnπ4).....(iv){{2}^{m}}\left( \cos \dfrac{m\pi }{6}+i\sin \dfrac{m\pi }{6} \right)={{4}^{n}}\left( \cos \dfrac{n\pi }{4}+i\sin \dfrac{n\pi }{4} \right).....\left( iv \right)
Now, we will compare the real and imaginary parts in the above equation. We will compare the real part first.
2mcosmπ6=4ncosnπ4{{2}^{m}}\cos \dfrac{m\pi }{6}={{4}^{n}}\cos \dfrac{n\pi }{4}
cosmπ6=4ncosnπ42m....(v)\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{4}^{n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}....\left( v \right)
We know that, 4n=22n.{{4}^{n}}={{2}^{2n}}. Thus, we get,
cosmπ6=22ncosnπ42m\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{2}^{2n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}
Also, 2a2b=2ab.\dfrac{{{2}^{a}}}{{{2}^{b}}}={{2}^{a-b}}. Thus,
cosmπ6=22nmcosnπ4.....(vi)\Rightarrow \cos \dfrac{m\pi }{6}={{2}^{2n-m}}\cos \dfrac{n\pi }{4}.....\left( vi \right)
Similarly, now comparing the imaginary part, we get,
sinmπ6=22nmsinnπ4.....(vii)\sin \dfrac{m\pi }{6}={{2}^{2n-m}}\sin \dfrac{n\pi }{4}.....\left( vii \right)
Now, we will square (vi) and (vii) and then add them.
(cosmπ6)2+(sinmπ6)2=(22nmcosnπ4)2+(22nmsinnπ4)2{{\left( \cos \dfrac{m\pi }{6} \right)}^{2}}+{{\left( \sin \dfrac{m\pi }{6} \right)}^{2}}={{\left( {{2}^{2n-m}}\cos \dfrac{n\pi }{4} \right)}^{2}}+{{\left( {{2}^{2n-m}}\sin \dfrac{n\pi }{4} \right)}^{2}}
(cos2mπ6)+(sin2mπ6)=(22nm)2(cos2nπ4+sin2nπ4)\Rightarrow \left( {{\cos }^{2}}\dfrac{m\pi }{6} \right)+\left( {{\sin }^{2}}\dfrac{m\pi }{6} \right)={{\left( {{2}^{2n-m}} \right)}^{2}}\left( {{\cos }^{2}}\dfrac{n\pi }{4}+{{\sin }^{2}}\dfrac{n\pi }{4} \right)
In the above equation, we are going to use the following identity,
cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Thus, we get,
1=(22nm)2(1)1={{\left( {{2}^{2n-m}} \right)}^{2}}\left( 1 \right)
22nm=1\Rightarrow {{2}^{2n-m}}=1
22nm=20\Rightarrow {{2}^{2n-m}}={{2}^{0}}
As the bases are equal, powers will be equal. Thus, we get,
2nm=02n-m=0
2n=m.....(viii)\Rightarrow 2n=m.....\left( viii \right)
Now, we are going to use the following identity in (iii).
cosθ+isinθ=eiθ\cos \theta +i\sin \theta ={{e}^{i\theta }}
Thus, we get,
2m(eiπ6)m=4n(eiπ4)n{{2}^{m}}{{\left( {{e}^{\dfrac{i\pi }{6}}} \right)}^{m}}={{4}^{n}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{n}}
2meimπ6=4neinπ4\Rightarrow {{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}
eimπ6einπ4=4n2m\Rightarrow \dfrac{{{e}^{\dfrac{im\pi }{6}}}}{{{e}^{\dfrac{in\pi }{4}}}}=\dfrac{{{4}^{n}}}{{{2}^{m}}}
ei(mπ6nπ4)=22nm.....(ix)\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}.....\left( ix \right)
Now, 2n = m. Thus, we get,
ei(mπ6nπ4)=22n2n\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-2n}}
ei(mπ6nπ4)=20\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{0}}
ei(mπ6nπ4)=1\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}=1
Now, we know that eiθ=cosθ+isinθ.{{e}^{i\theta }}=\cos \theta +i\sin \theta . Thus, we get,
cos(mπ6nπ4)+isin(mπ6nπ4)=1\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)+i\sin \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=1
Now, comparing the real parts, we get,
cos(mπ6nπ4)=cos2kπ\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=\cos 2k\pi
mπ6nπ4=2kπ\Rightarrow \dfrac{m\pi }{6}-\dfrac{n\pi }{4}=2k\pi
mπ6(m2)π4=2kπ\Rightarrow \dfrac{m\pi }{6}-\dfrac{\left( \dfrac{m}{2} \right)\pi }{4}=2k\pi
m6m8=2k\Rightarrow \dfrac{m}{6}-\dfrac{m}{8}=2k
8m6m48=2k\Rightarrow \dfrac{8m-6m}{48}=2k
2m48=2k\Rightarrow \dfrac{2m}{48}=2k
m48=2k\Rightarrow \dfrac{m}{48}=2k
m=48k\Rightarrow m=48k
Thus, n=m2,n=\dfrac{m}{2}, therefore we get,
n=48k2=24kn=\dfrac{48k}{2}=24k
Now, to get the lowest value of m and n, we put k = 1. Thus, m = 48 and n = 24.
Therefore, m + n = 24 + 48 = 72.

So, the correct answer is “Option (c)”.

Note: We can also derive the relation between m and n as follows: We have,
2meimπ6=4neinπ4{{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}
ei(mπ6nπ4)=22nm\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}
cos(mπ6nπ4)=22nm\Rightarrow \cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)={{2}^{2n-m}}
Here, we can take only positive values of m and n. Also, we are going to apply the boundary condition. The maximum value of LHS is equal to the minimum value of RHS. The maximum value of the cos function is 1. Thus,
22nm=1{{2}^{2n-m}}=1
22nm=20\Rightarrow {{2}^{2n-m}}={{2}^{0}}
2n=m\Rightarrow 2n=m