Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

If m and n are integers such that (2)1934429m8n=3n16m(464)(\sqrt{2})^{19} 3^{4} 4^{2} 9^{m} 8^{n}= 3^{n} 16^{m} (^4\sqrt{64}) then m is

A

-20

B

-12

C

-24

D

-16

Answer

-12

Explanation

Solution

(2)1934429m8n=3n16m(644)(\sqrt{2})^{19}3^44^29^m8^n=3^n16^m(\sqrt[4]{64})

2192×34×24×32m×23n=3n×24m×223⇒2^{\frac{19}{2}}\times3^4\times2^4\times3^{2m}\times2^{3n}=3^n\times2^{4m}\times2^{\frac{2}{3}}

2(192+4+3n)×3(4+2m)=2(4m+2)×3n⇒2^{(\frac{19}{2}+4+3n)}\times3^{(4+2m)}=2^{(4m+2)}\times3^n
By comparing the exponents of identical bases, we obtain
192+4+3n=4m+32.....(1)\frac{19}{2}+4+3n=4m+\frac{3}{2}.....(1)

4+2m=n.....(2)4+2m=n.....(2)
Replace the value of n from equation (2) into equation (1) and, upon solving for m, we obtain m = -12.