Solveeit Logo

Question

Mathematics Question on Probability

If M and N are any two events, then the probability that exactly one of them occurs is

A

P(M)+P(N)2P(MN)P(M) + P(N) - 2P(M \cap N)

B

P(M)+P(N)P((MN)P(M) + P(N) - P(\overline{(M \cup N)}

C

P(M)+P(N)2P(MN)P(\overline{M})+P(\overline{N})-2P(\overline{M} \cap \overline{N})

D

P(MN)P(MN)P(M \cap \overline{N})-P(\overline{M}\cap N)

Answer

P(M)+P(N)2P(MN)P(\overline{M})+P(\overline{N})-2P(\overline{M} \cap \overline{N})

Explanation

Solution

P(exactly one of M, N occurs)
=P(MN)(MN=P(MN)+P(MN)=P \\{(M \cap \overline{N}) \cup ( \overline{M} \cap N \\} = P(M \cap\overline{N})+P(\overline{M} \cap N)
=P(M)P(MN)+P(N)P(MN)= P(M) - P(M \cap N ) + P (N ) - P(M \cap N )
=P(M)+P(N)2P(MN)= P(M ) + P(N) - 2P(M \cap N )
Also, P(exactly one of them occurs)
=1P(MN)1P(MN) \\{ 1-P(\overline{M} \cap \overline{N})\\} \\{1-P(\overline{M} \cup \overline{N})\\}
=P(MN)P(MN)=P(M)+P(N)2P(MN)= P(\overline{M} \cup \overline{N})-P(\overline{M} \cap \overline{N})=P(\overline{M})+P(\overline{N})-2P(\overline{M}\cap \overline{N})
Hence, (a) and (c) are correct answers.