Solveeit Logo

Question

Question: If m₁ and m₂ are roots of the equation x² + (√3 + 2) x + √3 - 1 = 0, then the area of Δ formed by th...

If m₁ and m₂ are roots of the equation x² + (√3 + 2) x + √3 - 1 = 0, then the area of Δ formed by the line y = m₁x, y = m₂x, y = c is

A

33+114c2\frac{\sqrt{33} + \sqrt{11}}{4}c^2

B

32+1116c\frac{\sqrt{32} + \sqrt{11}}{16}c

C

33+104c2\frac{\sqrt{33} + \sqrt{10}}{4}c^2

D

33+214c3\frac{\sqrt{33} + \sqrt{21}}{4}c^3

Answer

33+114c2\frac{\sqrt{33} + \sqrt{11}}{4}c^2

Explanation

Solution

The vertices of the triangle are (0,0)(0,0), (c/m1,c)(c/m_1, c), and (c/m2,c)(c/m_2, c). The area is c22m2m1m1m2\frac{c^2}{2} \frac{|m_2 - m_1|}{|m_1 m_2|}. From Vieta's formulas, m1+m2=(3+2)m_1+m_2 = -(\sqrt{3}+2) and m1m2=31m_1m_2 = \sqrt{3}-1. We find (m2m1)2=(m1+m2)24m1m2=11(m_2-m_1)^2 = (m_1+m_2)^2 - 4m_1m_2 = 11, so m2m1=11|m_2-m_1| = \sqrt{11}. Substituting these values and rationalizing the denominator yields c2(33+11)4\frac{c^2(\sqrt{33}+\sqrt{11})}{4}.