Solveeit Logo

Question

Mathematics Question on Vectors

If m1,m2,m3m_1, m_2, m_3 and m4m_4 are respectively the magnitudes of the vectors a1=2ij+k,a2=3i4j4ka_1 = 2i - j + k, a_2 = 3i - 4j - 4 k a3=i+jka_3 = i + j - k and a4=i+3j+k,a_4 = - i + 3j + k , then the correct order of m1,m2,m3m_1, m_2, m_3 and m4m_4 is

A

m3<m1<m4<m2m_3 < m_1 < m_4 < m_2

B

m3<m1<m2<m4m_3 < m_1 < m_2 < m_4

C

m3<m4<m1<m2m_3 < m_4 < m_1 < m_2

D

m3<m4<m2<m1m_3 < m_4 < m_2 < m_1

Answer

m3<m1<m4<m2m_3 < m_1 < m_4 < m_2

Explanation

Solution

Given, m1=a1=22+12+12=6m_1 = |a_1| = \sqrt{2^2 + -1^2 + 1^2} = \sqrt{6} m2=a2=32+42+42=6m_2 = |a_2| = \sqrt{3^2 + -4^2 + -4^2} = \sqrt{6} m3=a3=12+12+12=3m_3 = |a_3| = \sqrt{1^2 + 1^2 + -1^2} = \sqrt{3} and m4=a4=12+32+12=11m_4 = |a_4| = \sqrt{-1^2 + 3^2 + 1^2} = \sqrt{11} m3<m1<m4<m2 \therefore \, m_3 < m_1 < m_4 < m_2