Solveeit Logo

Question

Mathematics Question on Vector Algebra

If m1,m2,m3m_{1}, m_{2}, m_{3} and m4m_{4} are respectively the magnitudes of the vectors a1=2i^j^+k^,a2=3i^4j^4k^\vec{ a }_{1}=2 \hat{ i }-\hat{ j }+\hat{ k }, \,\,\,\vec{ a }_{2}=3 \hat{ i }-4 \hat{ j }-4 \hat{ k } a3=i^+j^k^\vec{ a }_{3}=\hat{ i }+\hat{ j }-\hat{ k } \,\,\, and a4=i^+3j^+k^\,\,\,\vec{ a }_{4}=-\hat{ i }+3 \hat{ j }+\hat{ k } then the correct order of m1,m2,m3m_{1}, m_{2}, m_{3} and m4m_{4} is

A

m3<m1<m4<m2m_3 < m_1 < m_4 < m_2

B

m3<m1<m2<m4m_3 < m_1 < m_2 < m_4

C

m3<m4<m1<m2m_3 < m_4 < m_1 < m_2

D

m3<m4<m2<m1m_3 < m_4 < m_2 < m_1

Answer

m3<m1<m4<m2m_3 < m_1 < m_4 < m_2

Explanation

Solution

The correct answer is A:m3<m1<m4<m2m_3<m_1<m_4<m_2
Given that: m1,m2,m3,m4m_1,m_2,m_3,m_4 are the magnitudes of vectors;
a1=2i^+j^+k^\vec{a_1}=\hat{2i}+\hat{j}+\hat{k}
a2=3i^4j^4k^\vec{a_2}=3\hat{i}-4\hat{j}-4\hat{k}
a3=i^+j^k^\vec{a_3}=-\hat{i}+\hat{j}-\hat{k}
a4=i^+3j^+k^\vec{a_4}=-\hat{i}+3\hat{j}+\hat{k}
m1=a1=22+(1)2+(1)2=6\therefore m_{1}=\left|\vec{a_{1}}\right|=\sqrt{2^{2}+\left(-1\right)^{2}+\left(1\right)^{2}}=\sqrt{6}
m2=a2=32+(4)2+(4)2=41m_{2}=\left|\vec{a_{2}}\right|=\sqrt{3^{2}+\left(-4\right)^{2}+\left(-4\right)^{2}}=\sqrt{41}
m3=a3=12+12+(1)2=3m_{3}=\left|\vec{a_{3}}\right|=\sqrt{1^{2}+1^{2}+\left(-1\right)^{2}}=\sqrt{3}
and m4=a4=(1)2+(3)2+(1)2=11m_{4}=\left|\vec{a_{4}}\right|=\sqrt{\left(-1\right)^{2}+\left(3\right)^{2}+\left(1\right)^{2}}=\sqrt{11}
As question asked for the order of arrangement of m1,m2,m3,m4m_1,m_2,m_3,m_4 so it will be;
m3<m1<m4<m2\therefore m_{3} < m_{1} < m_{4} < m_{2}
magnitude