Question
Question: If lx +my + n = 0 represents a chord of the ellipse b<sup>2</sup>x<sup>2</sup> + a<sup>2</sup>y<sup...
If lx +my + n = 0 represents a chord of the ellipse
b2x2 + a2y2 = a2b2 whose eccentric angles differ by 900, then:
A
a2l2 + b2m2 = n2
B
l2a2+m2b2=n2(a2−b2)2
C
a2l2 + b2m2 = 2n2
D
None of these
Answer
a2l2 + b2m2 = 2n2
Explanation
Solution
Equation of chord joining points P (a cos α, b sin α) and Q (a cos β, b sin β) is
axcos(2α+β)+bysin(2α+β)=cos(2α−β)Now
β = α + 900
axcos(22α+900)+bysin(22α+900)=21
Now compare it with lx + my = -n
alcos(22θ+900)=bmsin(22α+900)=−2n1
⇒ cos2θ + sin2θ = 1
⇒ a2l2 + b2m2 = 2n2.