Solveeit Logo

Question

Question: If lx +my + n = 0 represents a chord of the ellipse b<sup>2</sup>x<sup>2</sup> + a<sup>2</sup>y<sup...

If lx +my + n = 0 represents a chord of the ellipse

b2x2 + a2y2 = a2b2 whose eccentric angles differ by 900, then:

A

a2l2 + b2m2 = n2

B

a2l2+b2m2=(a2b2)2n2\frac{a^{2}}{l^{2}} + \frac{b^{2}}{m^{2}} = \frac{(a^{2} - b^{2})^{2}}{n^{2}}

C

a2l2 + b2m2 = 2n2

D

None of these

Answer

a2l2 + b2m2 = 2n2

Explanation

Solution

Equation of chord joining points P (a cos α, b sin α) and Q (a cos β, b sin β) is

xacos(α+β2)+ybsin(α+β2)=cos(αβ2)\frac{x}{a}\cos\left( \frac{\alpha + \beta}{2} \right) + \frac{y}{b}\sin\left( \frac{\alpha + \beta}{2} \right) = \cos\left( \frac{\alpha - \beta}{2} \right)Now

β = α + 900

xacos(2α+9002)+ybsin(2α+9002)=12\frac{x}{a}\cos\left( \frac{2\alpha + 90^{0}}{2} \right) + \frac{y}{b}\sin\left( \frac{2\alpha + 90^{0}}{2} \right) = \frac{1}{\sqrt{2}}

Now compare it with lx + my = -n

cos(2θ+9002)al=sin(2α+9002)bm=12n\frac{\cos\left( \frac{2\theta + 90^{0}}{2} \right)}{al} = \frac{\sin\left( \frac{2\alpha + 90^{0}}{2} \right)}{bm} = - \frac{1}{\sqrt{2}n}

⇒ cos2θ + sin2θ = 1

⇒ a2l2 + b2m2 = 2n2.