Solveeit Logo

Question

Mathematics Question on Logarithms

If logx a, ax/2 and logb x are in GP, ​​then x is

A

loga(logb a)

B

loga (loge a) + loga (loge b)

C

-loga (loga b)

D

loga (loge b)-loga (loge a)

Answer

loga(logb a)

Explanation

Solution

The correct option is (A): loga(logb a)
To explain why the correct option is loga(logba)\log_a(\log_b a):

Given:

We have that logxa,ax/2,logbx\log_x a, a^{x/2}, \log_b x are in geometric progression (GP). By the property of GP, we can express it as:

(ax/2)2=logxalogbx(a^{x/2})^2 = \log_x a \cdot \log_b x

Step 1: Using Logarithmic Identities

Using the change of base formula:
logxa=logalogx\log_x a = \frac{\log a}{\log x}
logbx=logxlogb\log_b x = \frac{\log x}{\log b}

Substituting these into the GP condition gives:

(ax/2)2=logalogxlogxlogb(a^{x/2})^2 = \frac{\log a}{\log x} \cdot \frac{\log x}{\log b}
Simplifying further, we have:

(ax)=logalogb(a^{x}) = \frac{\log a}{\log b}
(ax)=logba(a^{x})=\log_ba

x=loga(logba)x=\log_a(\log_ba)