Solveeit Logo

Question

Question: If \(\log_{x}a,a^{x/2}\)and \(\log_{b}x\) are in G.P. then \(x\) is equal to...

If logxa,ax/2\log_{x}a,a^{x/2}and logbx\log_{b}x are in G.P. then xx is equal to

A

loga(logba)\log_{a}\left( \log_{b}a \right)

B

loga(logea)loga(logeb)\log_{a}\left( \log_{e}a \right) - \log_{a}\left( \log_{e}b \right)

C

loga(logab)- \log_{a}\left( \log_{a}b \right)

D

loga(logeb)loga(logea)\log_{a}\left( \log_{e}b \right) - \log_{a}\left( \log_{e}a \right)

Answer

loga(logea)loga(logeb)\log_{a}\left( \log_{e}a \right) - \log_{a}\left( \log_{e}b \right)

Explanation

Solution

As logxa,ax/2,logbx\log_{x}a,a^{x/2},\log_{b}xare in G.P.

(ax/2)2=logxa.logbx\left( a^{x/2} \right)^{2} = \log_{x}a.\log_{b}x

ax=logalogx.logxlogb=logalogb=logbaa^{x} = \frac{\log a}{\log x}.\frac{\log x}{\log b} = \frac{\log a}{\log b} = \log_{b}a

x=loga(logba)=loga(logea)loga(logeb)x = \log_{a}\left( \log_{b}a \right) = \log_{a}\left( \log_{e}a \right) - \log_{a}\left( \log_{e}b \right)