Solveeit Logo

Question

Question: If \(\log_{e}\left( \frac{a + b}{2} \right) = \frac{1}{2}(\log_{e}a + \log_{e}b)\), then relation be...

If loge(a+b2)=12(logea+logeb)\log_{e}\left( \frac{a + b}{2} \right) = \frac{1}{2}(\log_{e}a + \log_{e}b), then relation between a

and b will be

A

a=ba = b

B

a=b2a = \frac{b}{2}

C

2a=b2a = b

D

a=b3a = \frac{b}{3}

Answer

a=ba = b

Explanation

Solution

loge(a+b2)=12(logea+logeb)=12loge(ab)=logeab\log_{e}\left( \frac{a + b}{2} \right) = \frac{1}{2}(\log_{e}a + \log_{e}b) = \frac{1}{2}\log_{e}(ab) = \log_{e}\sqrt{ab}

a+b2=aba+b=2ab(ab)2=0ab=0a=b\Rightarrow \frac{a + b}{2} = \sqrt{ab} \Rightarrow a + b = 2\sqrt{ab} \Rightarrow \left( \sqrt{a} - \sqrt{b} \right)^{2} = 0 \Rightarrow \sqrt{a} - \sqrt{b} = 0\mathbf{\Rightarrow}\mathbf{a = b}