Question
Question: If $\log_{a} 3=2$ and $\log_{b} 8=3$ then $\log_{b} a$ is....
If loga3=2 and logb8=3 then logba is.

Answer
\frac{1}{2} \log_{2} 3
Explanation
Solution
-
Convert logarithmic form to exponential form:
- From loga3=2, we get a2=3. Since the base of a logarithm must be positive, a=3=31/2.
- From logb8=3, we get b3=8. Taking the cube root, b=2.
-
Substitute the values of a and b into logba:
- We need to find logba=log2(31/2).
-
Apply logarithm properties:
- Using the power rule for logarithms, logx(yz)=zlogxy, we simplify: log2(31/2)=21log23.
Therefore, logba=21log23.