Solveeit Logo

Question

Question: If \(\log_{4}5 = a\)and \(\log_{5}6 = b,\) then \(\log_{3}2\)is equal to...

If log45=a\log_{4}5 = aand log56=b,\log_{5}6 = b, then log32\log_{3}2is equal to

A

12a+1\frac{1}{2a + 1}

B

12b+1\frac{1}{2b + 1}

C

2ab+12ab + 1

D

12ab1\frac{1}{2ab - 1}

Answer

12ab1\frac{1}{2ab - 1}

Explanation

Solution

ab=log45.log56=log46=12log26ab = \log_{4}5.\log_{5}6 = \log_{4}6 = \frac{1}{2}\log_{2}6

ab=12(1+log23)2ab1=log23ab = \frac{1}{2}(1 + \log_{2}3) \Rightarrow 2ab - 1 = \log_{2}3

\therefore log32=12ab1\log_{3}2 = \frac{1}{2ab - 1}.