Solveeit Logo

Question

Question: If log2 \(\left( {a{x^2} + x + a} \right) \geqslant 1\) \(x \in R\) then find the exhaustive set of ...

If log2 (ax2+x+a)1\left( {a{x^2} + x + a} \right) \geqslant 1 xRx \in R then find the exhaustive set of values of a.

Explanation

Solution

We know log a is defined only when a > 0. Here log2 (ax2+x+a)1\left( {a{x^2} + x + a} \right) \geqslant 1 is defined when ax2+x+a0a{x^2} + x + a \geqslant 0 & ax2+x+a2a{x^2} + x + a \geqslant 2. Use both inequalities to find the exhaustive set of value of a.

Complete step by step solution: We are given,
log2(ax2+x+a)1{\log _2}\left( {a{x^2} + x + a} \right) \geqslant 1
For log to be defined, we must have
ax2+x+a0a{x^2} + x + a \geqslant 0

It is only possible when coefficient of x2>0{x^2} > 0 & Discriminant of quadratic equation ax2+x+a<0a{x^2} + x + a < 0

i.e.a>0\boxed{a > 0} →(1)

& Discriminant of ax2+x+aa{x^2} + x + a

is equal to 124a21^{2}-4a^{2}

i.e. Discriminant < 0

or, D<0{\text{D}} < 0
or, 14a2<01 - 4{a^2} < 0

(12a)(1+2a)<0\left( {1 - 2a} \right)\left( {1 + 2a} \right) < 0

Since log2(ax2+x+a)1{\log _2}\left( {a{x^2} + x + a} \right) \geqslant 1

Here, the base of log is 2 which is greater than 1.
So, it won’t change the sign of inequality when we remove the log.

Removing log from log2(ax2+x+a)1{\log _2}\left( {a{x^2} + x + a} \right) \geqslant 1
We get,
ax2+x+a21a{x^2} + x + a \geqslant {2^1}
ax2+x+a2\Rightarrow a{x^2} + x + a \geqslant 2

It is possible only when the coefficient of x2 is greater than O and Discriminant of the quadratic equation should be less than or equal to 0

i.e. a>0a > 0

& Discriminant 0 \leqslant 0

D<0 \Rightarrow D < 0
124a(a2)0{1^2} - 4a(a - 2) \leqslant 0
14a2+8a0\underbrace {1 - 4{a^2} + 8a}_ \downarrow \leqslant 0
Carrying this to right of inequality we get,

4a28a104{a^2} - 8a - 1 \geqslant 0

Now we will calculate roots of quadratic equation 4a28a1=04{a^2} - 8a - 1 = 0

We are going to use the formula to find the roots of quadratic eq. which is

b±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
i.e, [for quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 roots areb±b24ac2a\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}]

Solving roots of 4a28a1=04{a^2} - 8a - 1 = 0

We get,
a=(8)±(8)2(1)(4)(4)2×4a = - \dfrac{{( - 8) \pm \sqrt {{{\left( { - 8} \right)}^2} - \left( { - 1} \right)\left( 4 \right)\left( 4 \right)} }}{{2 \times 4}}
=8±64+168= \dfrac{{8 \pm \sqrt {64 + 16} }}{8}
=8±808= \dfrac{{8 \pm \sqrt {80} }}{8}
=1±808= \dfrac{{1 \pm \sqrt {80} }}{8}
=1±458= \dfrac{{1 \pm 4\sqrt 5 }}{8}
a=1±52a = \dfrac{{1 \pm \sqrt 5 }}{2}
Roots    are    1 + 52,      152\therefore {\text{Roots}}\;\;{\text{are}}\;\;{\text{1 + }}\dfrac{{\sqrt 5 }}{2},\;\;\;1 - \dfrac{{\sqrt 5 }}{2}

We had 4a28a104{a^2} - 8a - 1 \geqslant 0
[a(1+52)][a(152)]0\Rightarrow \left[ {a - \left( {1 + \dfrac{{\sqrt 5 }}{2}} \right)} \right]\left[ {a - \left( {1 - \dfrac{{\sqrt 5 }}{2}} \right)} \right] \geqslant 0
a1+52&a152\Rightarrow \boxed{a \geqslant 1 + \dfrac{{\sqrt 5 }}{2}\& a \leqslant 1 - \dfrac{{\sqrt 5 }}{2}}→(3)

From 1, 2 and 3

i.e a>0,    12<a<12a > 0,\;\;\dfrac{{ - 1}}{2} < a < \dfrac{1}{2} and
a1+52&a152a \geqslant 1 + \dfrac{{\sqrt 5 }}{2}\& a \leqslant 1 - \dfrac{{\sqrt 5 }}{2}

the exhaustive set of values of a are

a(0,+12)(1+52,)\boxed{a \in \left( {0, + \dfrac{1}{2}} \right) \cup \left( {1 + \dfrac{{\sqrt 5 }}{2},\infty } \right)}

Note: We can’t include a (12,  0) \in \left( {\dfrac{{ - 1}}{2},\;0} \right) and a152a \leqslant 1 - \dfrac{{\sqrt 5 }}{2} to exhaustive set because a > 0 always. So we have to rule out a(12,0)a \in \left( {\dfrac{{ - 1}}{2},0} \right) i.e in the interval (12,0)\left( {\dfrac{{ - 1}}{2},0} \right) a is less than 0. So you must really take care when you are writing the exhaustive set of values of x for some function