Solveeit Logo

Question

Mathematics Question on Sequence and series

If log(x+z)+log(x2y+z)=2log(xz),\log (x + z) + \log (x - 2y + z) = 2 \log (x - z), then x,y,z x, y, z are in

A

A.P

B

H.P

C

G.P

D

None of these

Answer

H.P

Explanation

Solution

log(x+z)+log(x2y+z)=2log(xz)\log (x + z) + \log (x - 2y + z) = 2 \log (x - z)
log(x+z)?(x2y+z)=log(xz)2\Rightarrow \:\:\: \log (x + z)?(x - 2y + z) = \log (x - z)^2
(x+z)22y(x+z)=(xz)2\Rightarrow \:\:\: (x + z)^2 -2y (x + z) = (x-z)^2
x2+z2+2xz2yx2yz=x2+z22zx\Rightarrow \:\:\:x^2 + z^2 + 2xz - 2yx - 2yz = x^2 + z^2 - 2zx
xzyxyz=zx2zx=xy+yz\Rightarrow \:\:\:xz - yx - yz = -zx \: \Rightarrow \: 2zx = xy + yz
2y=1x+1z1x,1y,1z\frac{2}{y}=\frac{1}{x}+\frac{1}{z} \Rightarrow \frac{1}{x} , \frac{1}{y} , \frac{1}{z} are in A.P.
x,y,z\therefore \:\:\:\: x,y,z are in H.P.