Solveeit Logo

Question

Question: If \[{{\log }_{\text{e}}}\left( 4 \right)=1.3868\], then \[{{\log }_{\text{e}}}\left( 4.01 \right)=?...

If loge(4)=1.3868{{\log }_{\text{e}}}\left( 4 \right)=1.3868, then loge(4.01)=?{{\log }_{\text{e}}}\left( 4.01 \right)=?
a)1.3968
b)1.3898
c)1.8393
d)None of these

Explanation

Solution

Hint : Assume the function = f(x)=loge(x)f\left( x \right)={{\log }_{\text{e}}}\left( x \right).Since the function to be calculated consists of a small change, convert the given logarithmic function in the form of loge(x+dx){{\log }_{\text{e}}}\left( x+dx \right) where ‘x’ represents the original value and ‘dx’ represents the small change in the original value. In this question; x= 4 and dx=0.01

** Complete step-by-step answer** :
Then, differentiate the function with respect to x and substitute the values of ‘x’ and ‘dx’ to get the solution.
Let a function f(x)=y=loge(x)......(1)f\left( x \right)=y={{\log }_{\text{e}}}\left( x \right)......(1)
Differentiate both sides of equation (1) with respect to ‘x’, we get:
f(x)=dydxf'\left( x \right)=\dfrac{dy}{dx}
Therefore, we can write: dy=f(x)dxdy=f'\left( x \right)dx
So, from equation (1), we can say: dy=f(loge(x))dxdy=f'\left( {{\log }_{\text{e}}}\left( x \right) \right)dx
Since, f(loge(x))=1xf'\left( {{\log }_{\text{e}}}\left( x \right) \right)=\dfrac{1}{x}
So, we can write: dy=1xdx......(2)dy=\dfrac{1}{x}dx......(2)

Now by increasing f(x) by an element ‘dx’, we get:
f(x+dx)=loge(x+dx)f\left( x+dx \right)={{\log }_{\text{e}}}\left( x+dx \right)
Comparing with equation (1), we can write:
y+dy=loge(x+dx)y+dy={{\log }_{\text{e}}}\left( x+dx \right)
Therefore, dy=loge(x+dx)ydy={{\log }_{\text{e}}}\left( x+dx \right)-y
dy=loge(x+dx)loge(x)......(3)\Rightarrow dy={{\log }_{\text{e}}}\left( x+dx \right)-{{\log }_{\text{e}}}\left( x \right)......(3)

Substitute the value of ‘dy’ from equation (2) in equation (4):
1xdx=loge(x+dx)loge(x)......(4)\dfrac{1}{x}dx={{\log }_{\text{e}}}\left( x+dx \right)-{{\log }_{\text{e}}}\left( x \right)......(4)
Now, compare equation (4) with the function given in the question i.e. loge(4.01){{\log }_{\text{e}}}\left( 4.01 \right)
Consider x = 4 and dx = 0.01 and put the values in equation (4).
We get:
(14×0.01)=loge(4.01)loge(4)\left( \dfrac{1}{4}\times 0.01 \right)={{\log }_{\text{e}}}\left( 4.01 \right)-{{\log }_{\text{e}}}\left( 4 \right)
Therefore, loge(4.01)=loge(4)+(14×0.01){{\log }_{\text{e}}}\left( 4.01 \right)={{\log }_{\text{e}}}\left( 4 \right)+\left( \dfrac{1}{4}\times 0.01 \right)

& \Rightarrow {{\log }_{\text{e}}}\left( 4.01 \right)=1.3868-0.0025 \\\ & \Rightarrow {{\log }_{\text{e}}}\left( 4.01 \right)=1.3893 \\\ \end{aligned}$$ **So, the correct answer is “Option C”.** **Note** : As we know that, $$\begin{aligned} & \underset{\Delta x\to 0}{\mathop{\lim }}\,\dfrac{\Delta y}{\Delta x}=\dfrac{dy}{dx}=f'\left( x \right) \\\ & \Delta y=f'\left( x \right)\Delta x \\\ & dy=f'\left( x \right)dx \\\ \end{aligned}$$ $$\underset{\Delta x\to 0}{\mathop{\lim }}\,\dfrac{\Delta y}{\Delta x}=\dfrac{dy}{dx}=f'\left( x \right)$$ Therefore, $$\Delta y=f'\left( x \right)\Delta x$$ Also $$dy=f'\left( x \right)dx$$ Hence, we can use differentials to calculate small changes in the dependent variable (dy) of a function corresponding to small changes in the independent variable f(x).