Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

If \log_{\sin \frac{\pi}{6}} \left\\{\frac{\left|z-2\right| + 3 }{3\left|z - 2\right| - 1 }\right\\}>1 , then

A

z2>7|z - 2| > 7

B

z2<7|z - 2| < 7

C

z2<3|z - 2| < 3

D

z2<6|z - 2| < 6

Answer

z2>7|z - 2| > 7

Explanation

Solution

We have, \log _{\sin \frac{\pi}{6}}\left\\{\frac{|z-2|+3}{3|z-2|-1}\right\\}>\,1 \Rightarrow \, \log _{1 / 2}\left\\{\frac{|z-2|+3}{3|z-2|-1}\right\\}>\,1 \therefore Here, base of log is less than 11 i.e., 127\frac{1}{2}\,7