Solveeit Logo

Question

Mathematics Question on Differential equations

If logey=3sin1x\log_e y = 3 \sin^{-1}x, then (1x)2yxy(1 - x)^2 y'' - xy' at x=12x = \frac{1}{2} is equal to:

A

9eπ/69e^{\pi/6}

B

3eπ/63e^{\pi/6}

C

3eπ/23e^{\pi/2}

D

9eπ/29e^{\pi/2}

Answer

9eπ/29e^{\pi/2}

Explanation

Solution

We are given the equation logey=3sin1x\log_e y = 3 \sin^{-1} x. We need to find (1x2)yxy(1 - x^2) y'' - xy' at x=12x = \frac{1}{2}.

Step 1: Differentiate yy

Start by differentiating y=e3sin1xy = e^{3 \sin^{-1} x}:

1yy=311x2    y=3y1x2\frac{1}{y} \cdot y' = 3 \cdot \frac{1}{\sqrt{1 - x^2}} \implies y' = \frac{3y}{\sqrt{1 - x^2}}

At x=12x = \frac{1}{2}, we get:

y=3eπ63=23eπ63y' = \frac{3e^{\frac{\pi}{6}}}{\sqrt{3}} = \frac{2\sqrt{3}e^{\frac{\pi}{6}}}{3}

Step 2: Differentiate yy' to find yy''

Now differentiate yy' to get yy'':

y=ddx(3y1x2)y'' = \frac{d}{dx} \left( \frac{3y}{\sqrt{1 - x^2}} \right)

Using the quotient rule, we get:

y=3(1x2yy(x1x2)(1x2))y'' = 3 \left( \frac{\sqrt{1 - x^2} \cdot y' - y \cdot \left( -\frac{x}{\sqrt{1 - x^2}} \right)}{(1 - x^2)} \right)

Substitute the expression for yy':

Step 3: Substitute x=12x = \frac{1}{2}

At x=12x = \frac{1}{2}, we substitute values for yy and yy':

(1x2)y=3(3eπ6+eπ63)=3eπ6(3+13)(1 - x^2) y'' = 3 \left( 3e^{\frac{\pi}{6}} + \frac{e^{\frac{\pi}{6}}}{\sqrt{3}} \right) = 3e^{\frac{\pi}{6}} \left( 3 + \frac{1}{\sqrt{3}} \right)

Now, calculate (1x2)yxy(1 - x^2) y'' - xy':

(1x2)yxy=3eπ6(3+13)12×23eπ63(1 - x^2) y'' - xy' = 3e^{\frac{\pi}{6}} \left( 3 + \frac{1}{\sqrt{3}} \right) - \frac{1}{2} \times \frac{2\sqrt{3}e^{\frac{\pi}{6}}}{3}

After simplifying:

(1x2)yxy=9eπ2(1 - x^2) y'' - xy' = 9e^{\frac{\pi}{2}}

Thus, the correct answer is:

9eπ2\boxed{9e^{\frac{\pi}{2}}}