Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

If loge(x216)loge(4x11)\log _{e}\left(x^{2}-16\right) \leq \log _{e}(4 x-11), then

A

$4

B

x4x\, 4

C

1x5-1 \le x\le5

D

x5x\, 5

Answer

$4

Explanation

Solution

Given, loge(x216)loge(4x11)\log _{e}\left(x^{2}-16\right) \leq \log _{e}(4 x-11) if and only if x2164x11x^{2}-16 \leq 4 x-11 x24x50\Rightarrow x^{2}- 4 x-5 \leq 0 x25x+x50x^{2}-5 x+x-5 \leq 0 x(x5)+1(x5)0\Rightarrow x(x-5)+1(x-5) \leq 0 (x5)(x+1)0(x-5)(x+1) \leq 0 Sign scheme of x24x50x^{2}-4 x-5 \leq 0 1x5-1 \leq x \leq 5