Question
Mathematics Question on Limits
If logea,logeb,logec are in an A.P. and logea−loge2b,loge2b−loge3c,loge3c−logea are also in an A.P., then a:b:c is equal to
A
9 : 6 : 4
B
16 : 4 : 1
C
25 : 10 : 4
D
6 : 3 : 2
Answer
9 : 6 : 4
Explanation
Solution
Since logea,logeb,logec are in an A.P., we have:
b2=ac
Also, since loge(2ba),loge(3c2b),loge(a3c) are in an A.P., we get:
(3c2b)2=2ba×a3c
⟹cb=23
Substituting into equation (1):
b2=a×32b
⟹ba=23
Thus, a:b:c=9:6:4.
The Correct Answer is: 9 : 6 : 4