Solveeit Logo

Question

Mathematics Question on Limits

If logea,logeb,logec\log_e a, \log_e b, \log_e c are in an A.P. and logealoge2b,loge2bloge3c,loge3clogea\log_e a - \log_e 2b, \log_e 2b - \log_e 3c, \log_e 3c - \log_e a are also in an A.P., then a:b:ca : b : c is equal to

A

9 : 6 : 4

B

16 : 4 : 1

C

25 : 10 : 4

D

6 : 3 : 2

Answer

9 : 6 : 4

Explanation

Solution

Since logea,logeb,logec\log_e a, \log_e b, \log_e c are in an A.P., we have:
b2=acb^2 = ac

Also, since loge(a2b),loge(2b3c),loge(3ca)\log_e \left( \frac{a}{2b} \right), \log_e \left( \frac{2b}{3c} \right), \log_e \left( \frac{3c}{a} \right) are in an A.P., we get:
(2b3c)2=a2b×3ca\left( \frac{2b}{3c} \right)^2 = \frac{a}{2b} \times \frac{3c}{a}

    bc=32\implies \frac{b}{c} = \frac{3}{2}
Substituting into equation (1):
b2=a×2b3b^2 = a \times \frac{2b}{3}
    ab=32\implies \frac{a}{b} = \frac{3}{2}
Thus, a:b:c=9:6:4a : b : c = 9 : 6 : 4.

The Correct Answer is: 9 : 6 : 4