Question
Mathematics Question on Sequence and series
If loge5, loge(5x−1) and loge (5x−511) are in A.P., then the values of x are
A
log54 and log53
B
log34 and log43
C
log34 and log35
D
log56 and log57
Answer
log54 and log53
Explanation
Solution
Since, loge5,loge(5x−1) and loge(5x−511)
are in AP.
∴2loge(5x−1)=loge5+loge(5x−511)
⇒(5x−1)2=5(5x−511)
⇒52x+1−2×5x=5×5x−11
⇒52x−7×5x+12=0
⇒52x−4×5x−3×5x+12=0
⇒(5x−4)(5x−3)=0
⇒5x=4,5x=3
⇒x=log54,x=log53