Solveeit Logo

Question

Question: If \( {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 \) (where a, b, c ar...

If logba.logca+logab.logcb+logac.logbc=3{\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 (where a, b, c are different positive real numbers ≠ 1) then find the value of abcabc .

Explanation

Solution

Hint : A logarithm, of a base b, is the power to which the base needs to be raised to yield a given number. We know that logba=logalogb{\log _b}a = \dfrac{{\log a}}{{\log b}} , so first convert the given logarithmic terms with bases to this form using this conversion. And then solve the remaining solution referring to the below mentioned formula.
Formulas used:
logba=logalogb{\log _b}a = \dfrac{{\log a}}{{\log b}}
If x+y+z=0x + y + z = 0 , then x3+y3+z3=3xyz{x^3} + {y^3} + {z^3} = 3xyz and vice-versa.

Complete step-by-step answer :
We are given a logarithmic equation logba.logca+logab.logcb+logac.logbc=3{\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 where a, b, c are different positive real numbers ≠ 1.
We have to find the value of abcabc .
As we already know that logba=logalogb{\log _b}a = \dfrac{{\log a}}{{\log b}} .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
logca=logalogc{\log _c}a = \dfrac{{\log a}}{{\log c}}
logab=logbloga{\log _a}b = \dfrac{{\log b}}{{\log a}}
logcb=logblogc{\log _c}b = \dfrac{{\log b}}{{\log c}}
logac=logcloga{\log _a}c = \dfrac{{\log c}}{{\log a}}
logbc=logclogb{\log _b}c = \dfrac{{\log c}}{{\log b}}
On substituting all the obtained fractional terms in logba.logca+logab.logcb+logac.logbc=3{\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 , we get
(logalogb×logalogc)+(logbloga×logblogc)+(logcloga×logclogb)=3\left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3
(loga)2logb.logc+(logb)2loga.logc+(logc)2loga.logb=3\Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3
Take out the LCM and convert the above left hand side into a single fraction, the LCM is loga.logb.logc\log a.\log b.\log c
loga×(loga)2+logb×(logb)2+logc×(logc)2loga.logb.logc=3\Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3
(loga)3+(logb)3+(logc)3loga.logb.logc=3\Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3
On cross multiplication, we get
(loga)3+(logb)3+(logc)3=3×(loga.logb.logc)=3loga.logb.logc\Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c
As we can see, the above equation is in the form of x3+y3+z3=3xyz{x^3} + {y^3} + {z^3} = 3xyz , where x is loga\log a , y is logb\log b and z is logc\log c
Therefore, x+y+zx + y + z must be equal to zero which means loga+logb+logc=0\log a + \log b + \log c = 0
We know that loga+logb\log a + \log b is equal to logab\log ab
Therefore, loga+logb+logc=logabc\log a + \log b + \log c = \log abc
logabc=0\log abc = 0
Sending the logarithm to the right hand side (as logabc\log abc is a common logarithm it will have a base 10)
abc=100=1abc = {10^0} = 1 (Anything to the power zero is equal to 1)
Therefore, the value of abcabc is 1.
So, the correct answer is “1”.

Note : We know that logba=logalogb{\log _b}a = \dfrac{{\log a}}{{\log b}} , which can also be written as 1(logbloga)=1logab\dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} . And while finding the value of logba{\log _b}a , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If logba=k{\log _b}a = k , then a=bka = {b^k}