Solveeit Logo

Question

Question: If \(\log _ { 3 } 2 , \log _ { 3 } \left( 2 ^ { x } - 5 \right)\) and \(\log _ { 3 } \left( 2 ^ { ...

If log32,log3(2x5)\log _ { 3 } 2 , \log _ { 3 } \left( 2 ^ { x } - 5 \right) and log3(2x72)\log _ { 3 } \left( 2 ^ { x } - \frac { 7 } { 2 } \right) are in A.P., then xx is equal to.

A
B
C

1,321 , \frac { 3 } { 2 }

D

None of these

Answer

None of these

Explanation

Solution

log32,log3(2x5)\log _ { 3 } 2 , \log _ { 3 } \left( 2 ^ { x } - 5 \right) and log3(2x72)\log _ { 3 } \left( 2 ^ { x } - \frac { 7 } { 2 } \right) are in A.P.

\Rightarrow 2log3(2x5)=log3[(2)(2x72)]2 \log _ { 3 } \left( 2 ^ { x } - 5 \right) = \log _ { 3 } \left[ ( 2 ) \left( 2 ^ { x } - \frac { 7 } { 2 } \right) \right]

\Rightarrow (2x5)2=2x+17\left( 2 ^ { x } - 5 \right) ^ { 2 } = 2 ^ { x + 1 } - 7 \Rightarrow 22x122x32=02 ^ { 2 x } - 12 \cdot 2 ^ { x } - 32 = 0

\Rightarrow x=2,3x = 2,3

But x=2x = 2 does not hold, hence x=3x = 3 .