Solveeit Logo

Question

Question: If \({\log _3}5 = x\) and \({\log _{25}}11 = y\) then the value of \({\log _3}\left( {\dfrac{{11}}{3...

If log35=x{\log _3}5 = x and log2511=y{\log _{25}}11 = y then the value of log3(113){\log _3}\left( {\dfrac{{11}}{3}} \right) in terms of x and y is

Explanation

Solution

log35=x{\log _3}5 = xand log2511=y{\log _{25}}11 = y we will some property of logarithmic
logab=logbloga{\log _a}b = \dfrac{{\log b}}{{\log a}} and log2511=log11log25{\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}} .
logab=bloga\log {a^b} = b\log athen log2511=log112log5{\log _{25}}11 = \dfrac{{\log 11}}{{2\log 5}}. Then we will divide it with log3\log 3 then we get log2511=log3112log35{\log _{25}}11 = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}} from this we will get the value of log311{\log _3}11
And logab=logalogb\log \dfrac{a}{b} = \log a - \log b then log3113=log311log33{\log _3}\dfrac{{11}}{3} = {\log _3}11 - {\log _3}3 and logaa=1{\log _a}a = 1 then substituting all the values we will get the answer.

Complete step-by-step answer:
given log35=x{\log _3}5 = x and log2511=y{\log _{25}}11 = y
it is known that logab=logbloga{\log _a}b = \dfrac{{\log b}}{{\log a}} then
log2511=y{\log _{25}}11 = y
log2511=log11log25=y\Rightarrow {\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}} = y
We know that logab=bloga\log {a^b} = b\log a so,
y=log112log5y = \dfrac{{\log 11}}{{2\log 5}}
Dividing denominator and numerator with log3\log 3 then we get
y=log11log32log5log3=y=log3112log35y = \dfrac{{\dfrac{{\log 11}}{{\log 3}}}}{{\dfrac{{2\log 5}}{{\log 3}}}} = y = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}
According to question log35=x{\log _3}5 = x
Then log311=2yx{\log _3}11 = 2yx …. (1)
Now, log3(113)=log311log33{\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3 as [logab=logalogb]\left[ {\log \dfrac{a}{b} = \log a - \log b} \right]
And we know that logaa=1{\log _a}a = 1 then log33=1{\log _3}3 = 1 and substituting the value (1) we get
log3(113)=2xy1{\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1

Note: Properties used in question are
logab=logbloga{\log _a}b = \dfrac{{\log b}}{{\log a}}
logab=bloga\log {a^b} = b\log a
logab=logalogb\log \dfrac{a}{b} = \log a - \log b
logaa=1{\log _a}a = 1
If there is nothing is written is base then it has a default 10