Solveeit Logo

Question

Question: If \[{\log _3}5 = x\]and \[{\log _{25}}11 = y\], then the value of \[{\log _3}\left( {\dfrac{{11}}{3...

If log35=x{\log _3}5 = xand log2511=y{\log _{25}}11 = y, then the value of log3(113){\log _3}\left( {\dfrac{{11}}{3}} \right) in terms of xx and yy is

Explanation

Solution

Here, we will use the logarithm properties like, logb2a=12logba{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a , logba=logcalogcb{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}} and logc(ab)=logcalogcb{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b to rewrite the given conditions in order to find the required value.

Complete step-by-step answer:
We are given that the log35=x{\log _3}5 = x and log2511=y{\log _{25}}11 = y.
We will now rewrite the expression log2511=y{\log _{25}}11 = y, we get
log5211=y\Rightarrow {\log _{{5^2}}}11 = y
Using the logarithm property, logb2a=12logba{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a in the above expression, we get
12log511=y\Rightarrow \dfrac{1}{2}{\log _5}11 = y
Multiplying the above equation by 2 on both sides, we get

2(12log511)=2y log511=2y  \Rightarrow 2\left( {\dfrac{1}{2}{{\log }_5}11} \right) = 2y \\\ \Rightarrow {\log _5}11 = 2y \\\

Let us now make use of the property of logarithm, logba=logcalogcb{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}.
So, on applying this property in the above equation, we get
log311log35=2y\Rightarrow \dfrac{{{{\log }_3}11}}{{{{\log }_3}5}} = 2y
Substituting the value of log35{\log _3}5 in the above expression, we get
log311x=2y\Rightarrow \dfrac{{{{\log }_3}11}}{x} = 2y
Multiplying the above equation by xx on both sides, we get

x(log311x)=2xy log311=2xy  \Rightarrow x\left( {\dfrac{{{{\log }_3}11}}{x}} \right) = 2xy \\\ \Rightarrow {\log _3}11 = 2xy \\\

Rewriting the expression log3113{\log _3}\dfrac{{11}}{3} using the logarithm property, logc(ab)=logcalogcb{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b, we get
log3(113)=log311log33\Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3
Substituting the values of log311{\log _3}11 and log33{\log _3}3 in the above expression, we get
log3(113)=2xy1\Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1
Thus, the value of log3113{\log _3}\dfrac{{11}}{3} is 2xy12xy - 1.

Note: The logarithm rules can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is ee.