Solveeit Logo

Question

Question: If \( {\log _2}x + {\log _4}x + {\log _8}x = {\log _k}x \) , for all \( x \in {R^ + } \) and \( k = ...

If log2x+log4x+log8x=logkx{\log _2}x + {\log _4}x + {\log _8}x = {\log _k}x , for all xR+x \in {R^ + } and k=abk = \sqrt[b]{a} , where a,bNa,b \in N . Find (a+b)min{\left( {a + b} \right)_{\min }} .

Explanation

Solution

Hint : Use the formulae logarithmic base change rule i.e. logbx=logcxlogcb{\log _b}x = \dfrac{{{{\log }_c}x}}{{{{\log }_c}b}} , the logarithmic form of am=n{a^m} = n is logan=m{\log _a}n = m . In addition to this, the formula i.e. amn=(am)n{a^{m \cdot n}} = {\left( {{a^m}} \right)^n} can also be used to solve this question.

Complete step-by-step answer :
log2x+log4x+log8x=logkx{\log _2}x + {\log _4}x + {\log _8}x = {\log _k}x is the given equation.
We know that according to the logarithm base change rule, logbx=logcxlogcb{\log _b}x = \dfrac{{{{\log }_c}x}}{{{{\log }_c}b}}
Compare the term log2x{\log _2}x with logbx{\log _b}x we get, x=x,b=2x = x,{\rm{ }}b = 2 , also consider c=10c = 10 .
Substitute the value of x=x,b=2x = x,{\rm{ }}b = 2 and c=10c = 10 in the equation logbx=logcxlogcb{\log _b}x = \dfrac{{{{\log }_c}x}}{{{{\log }_c}b}} .
log2x=log10xlog102\Rightarrow {\log _2}x = \dfrac{{{{\log }_{10}}x}}{{{{\log }_{10}}2}}
We know that when the argument is 10, it is not shown in the symbol. This means, log10m=logm{\log _{10}}m = \log {\rm{ }}m .
So, log2x=log10xlog102{\log _2}x = \dfrac{{{{\log }_{10}}x}}{{{{\log }_{10}}2}} can be written as log2x=logxlog2{\log _2}x = \dfrac{{\log x}}{{\log 2}}
Similarly,
log4x=logxlog4{\log _4}x = \dfrac{{\log x}}{{\log 4}} and log8x=logxlog8{\log _8}x = \dfrac{{\log x}}{{\log 8}}
We know that logam=mloga\log {a^m} = m \cdot \log a as per the logarithm rule.
We can write log4\log 4 as:
log4=log22 =2log2......(1) \log 4 = \log {2^2}\\\ = 2\log 2......\left( 1 \right)
Similarly, log8\log 8 can be written as:
log8=log23 =3log2......(2) \log 8 = \log {2^3}\\\ = 3\log 2......\left( 2 \right)

log2x+log4x+log8x=logkx logxlog2+logxlog4+logxlog8=logkx{\log _2}x + {\log _4}x + {\log _8}x = {\log _k}x\\\ \dfrac{{\log x}}{{\log 2}} + \dfrac{{\log x}}{{\log 4}} + \dfrac{{\log x}}{{\log 8}} = {\log _k}x

After substituting the value of log8=3log2\log 8 = 3\log 2 and log4=2log2\log 4 = 2\log 2 from equations (1) and (2) in the equation logxlog2+logxlog4+logxlog8=logkx\dfrac{{\log x}}{{\log 2}} + \dfrac{{\log x}}{{\log 4}} + \dfrac{{\log x}}{{\log 8}} = {\log _k}x, we get
logxlog2+logx2log2+logx3log2=logkx\Rightarrow \dfrac{{\log x}}{{\log 2}} + \dfrac{{\log x}}{{2\log 2}} + \dfrac{{\log x}}{{3\log 2}} = {\log _k}x
After taking logxlog2\dfrac{{\log x}}{{\log 2}} common from the left-hand side of the equation, we get
logxlog2(1+12+13)=logkx\Rightarrow \dfrac{{\log x}}{{\log 2}}\left( {1 + \dfrac{1}{2} + \dfrac{1}{3}} \right) = {\log _k}x
Now, we have to simplify the equation by taking the denominator as LCM of 1, 2 and 3 and accordingly adjusting other values.

logxlog2(6+3+26)=logkx logxlog2116=logkx\Rightarrow \dfrac{{\log x}}{{\log 2}}\left( {\dfrac{{6 + 3 + 2}}{6}} \right) = {\log _k}x\\\ \Rightarrow \dfrac{{\log x}}{{\log 2}} \cdot \dfrac{{11}}{6} = {\log _k}x

On dividing the numerator and denominator of the left-hand side of the equation by 11, we get

(\raise0.7ex 11 !/1111!\lower0.7ex 11 \raise0.7ex 6 !/611!\lower0.7ex 11 )logxlog2=logkx logx611log2=logkx\Rightarrow \left( {\dfrac{{{\raise0.7ex\hbox{ $ {11} $ } \\!{\left/ {\vphantom {{11} {11}}}\right.} \\!\lower0.7ex\hbox{ $ {11} $ }}}}{{{\raise0.7ex\hbox{ $ 6 $ } \\!{\left/ {\vphantom {6 {11}}}\right.} \\!\lower0.7ex\hbox{ $ {11} $ }}}}} \right) \cdot \dfrac{{\log x}}{{\log 2}} = {\log _k}x\\\ \dfrac{{\log x}}{{\dfrac{6}{{11}}\log 2}} = {\log _k}x

We know that logam=mloga\log {a^m} = m \cdot \log a .
After comparing 611log2\dfrac{6}{{11}}\log 2 with mlogam \cdot \log a , we get, m=611,a=2m = \dfrac{6}{{11}},{\rm{ }}a{\rm{ = 2}} .
Substitute m=611,a=2m = \dfrac{6}{{11}},{\rm{ }}a{\rm{ = 2}} in the equation mloga=logamm \cdot \log a = \log {a^m} .
611log2=log2(611)......(3)\Rightarrow \dfrac{6}{{11}} \cdot \log 2 = \log {2^{\left( {\dfrac{6}{{11}}} \right)}}......\left( 3 \right)
After substituting equation (3) in the equation logx611log2=logkx\dfrac{{\log x}}{{\dfrac{6}{{11}}\log 2}} = {\log _k}x, we get
logxlog2(611)=logkx\dfrac{{\log x}}{{\log {2^{\left( {\dfrac{6}{{11}}} \right)}}}} = {\log _k}x
We know that logcxlogcb=logbx\dfrac{{{{\log }_c}x}}{{{{\log }_c}b}} = {\log _b}x .
Now we have to compare logxlog2(611)\dfrac{{\log x}}{{\log {2^{\left( {\dfrac{6}{{11}}} \right)}}}} with logcxlogcb\dfrac{{{{\log }_c}x}}{{{{\log }_c}b}} to find the values of c,b,xc,{\rm{ }}b,{\rm{ }}x .
On comparing, we get, c=10c = 10 , x=xx = x and b=2(611)b = {2^{\left( {\dfrac{6}{{11}}} \right)}} .
Substitute the values of c=10c = 10 , x=xx = x and b=2(611)b = {2^{\left( {\dfrac{6}{{11}}} \right)}} in the equation logcxlogcb=logbx\dfrac{{{{\log }_c}x}}{{{{\log }_c}b}} = {\log _b}x .
logxlog2(611)=log2(611)x......(4)\Rightarrow \dfrac{{\log x}}{{\log {2^{\left( {\dfrac{6}{{11}}} \right)}}}} = {\log _{{2^{\left( {\dfrac{6}{{11}}} \right)}}}}x......\left( 4 \right)
Now, we can use the equation (4) in the equation logxlog2(611)=logkx\dfrac{{\log x}}{{\log {2^{\left( {\dfrac{6}{{11}}} \right)}}}} = {\log _k}x.
log2(611)x=logkx{\log _{{2^{\left( {\dfrac{6}{{11}}} \right)}}}}x = {\log _k}x
In order to find the value of kk , we have to compare the left- and right-hand side of the equation.
k=2(611)k = {2^{\left( {\dfrac{6}{{11}}} \right)}}
As per the question, we know that k=abk = \sqrt[b]{a}
Now, we can equate k=2(611)k = {2^{\left( {\dfrac{6}{{11}}} \right)}} and k=abk = \sqrt[b]{a} to each other.
2(611)=ab{2^{\left( {\dfrac{6}{{11}}} \right)}} = \sqrt[b]{a}
We know that ab\sqrt[b]{a} can also be written as a1b{a^{\dfrac{1}{b}}} .
2(611)=a1b{2^{\left( {\dfrac{6}{{11}}} \right)}} = {a^{\dfrac{1}{b}}}
We know that 2mn=(2m)n{2^{m \cdot n}} = {\left( {{2^m}} \right)^n} .
In order to simplify the calculation, we have to apply the formula 2mn=(2m)n{2^{m \cdot n}} = {\left( {{2^m}} \right)^n} in the equation 2(611)=a1b{2^{\left( {\dfrac{6}{{11}}} \right)}} = {a^{\dfrac{1}{b}}} .
(26)111=a1b\Rightarrow {\left( {{2^6}} \right)^{\dfrac{1}{{11}}}} = {a^{\dfrac{1}{b}}}
26=2×2×2×2×2×2 =64 {2^6} = 2 \times 2 \times 2 \times 2 \times 2 \times 2\\\ = 64
We have to substitute equation (5) in the equation(26)111=a1b{\left( {{2^6}} \right)^{\dfrac{1}{{11}}}} = {a^{\dfrac{1}{b}}} to reach to the final solution.

(26)111=a1b (64)111=a1b\Rightarrow {\left( {{2^6}} \right)^{\dfrac{1}{{11}}}} = {a^{\dfrac{1}{b}}}\\\ \Rightarrow {\left( {64} \right)^{\dfrac{1}{{11}}}} = {a^{\dfrac{1}{b}}}

To find the values of aa and bb , we have to compare both sides of the equation (64)111=a1b{\left( {64} \right)^{\dfrac{1}{{11}}}} = {a^{\dfrac{1}{b}}}.
a=64\Rightarrow a = 64 and b=11b = 11
(a+b)minimum=64+11 =75 \Rightarrow {\left( {a + b} \right)_{{\rm{minimum}}}} = 64 + 11\\\ = 75
Therefore, the required value is (a+b)minimum=75{\left( {a + b} \right)_{{\rm{minimum}}}} = 75 .

Note : In this type of questions, students often forget to apply the logarithmic rule for base switch and base change rule. While using amn=(am)n{a^{m \cdot n}} = {\left( {{a^m}} \right)^n} formula student needs to take care that amn=(am)n{a^{m \cdot n}} = {\left( {{a^m}} \right)^n} formula is valid and amnaman{a^{m \cdot n}} \ne {a^m} \cdot {a^n} .