Question
Mathematics Question on Trigonometric Functions
If log2sinx−log2cosx−log2(1−tan2x)=−1, then
A
2nπ+8π,n∈Z
B
nπ−8π,n∈Z
C
4nπ+8π,n∈Z
D
Noneofthese
Answer
2nπ+8π,n∈Z
Explanation
Solution
log2sinx−log2cosx−log2(1−tan2x)=−1
⇒ log21−tan2xsinx/cosx=−1
⇒ log2(1−tan2xtanx)=−1
∴ 1−tan2xtanx=2−1
⇒ 1−tan2x2tanx=2−1.2−1=2∘=1
⇒ tan2x=1=tan4π
∴ 2x=nπ+4π
⇒ x=2nπ+8π,nπZ