Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If log2sinxlog2cosxlog2(1tan2x)=1\log_2 \: \sin x - \log_2 \cos x -\log_2(1 - \tan^2x) = - 1, then

A

nπ2+π8,nZ\frac{n\pi}{2}+\frac{\pi}{8},n\in\,Z

B

nππ8,nZ{n\pi}-\frac{\pi}{8},n\in\,Z

C

nπ4+π8,nZ\frac{n\pi}{4}+\frac{\pi}{8},n\in\,Z

D

NoneoftheseNone\, of\, these

Answer

nπ2+π8,nZ\frac{n\pi}{2}+\frac{\pi}{8},n\in\,Z

Explanation

Solution

log2sinxlog2cosxlog2(1tan2x)=1\log_2 \sin x - \log_2 \cos x - \log_2 \, (1 - \tan^2 \, x) = - 1
\Rightarrow log2sinx/cosx1tan2x=1\log_2 \frac{\sin \, x/\cos\, x}{ 1 -\tan^2 \, x} = -1
\Rightarrow log2(tanx1tan2x)=1\log_2 \left( \frac{ \tan \, x}{1 - \tan^2 \, x} \right) = - 1
\therefore tanx1tan2x=21\frac{\tan \, x}{1 - \tan^2 \,x} = 2^{-1}
\Rightarrow 2tanx1tan2x=21.21=2=1\frac{2 \, \tan \, x}{1 - \tan^2 \, x} = 2^{-1}.2^{-1} = 2^\circ = 1
\Rightarrow tan2x=1=tanπ4\tan 2x = 1 = \tan \frac{\pi}{4}
\therefore 2x=nπ+π42 x = n \pi + \frac{\pi}{4}
\Rightarrow x=nπ2+π8,nπZx = \frac{n \pi}{2} + \frac{\pi}{8} , n \pi Z