Solveeit Logo

Question

Question: If \[{\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2...

If log2(x+y)=log3(xy)=log25log0.2{\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}} then find the values of x and y.

Explanation

Solution

We will use the basics of logarithm here. First we will simplify the third term and then we will use it to find the value of x and y with the first two ratios.

Complete step-by-step answer:
Given that,
log2(x+y)=log3(xy)=log25log0.2{\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}
Now
log25log0.2\dfrac{{\log 25}}{{\log 0.2}}
Here 25 can be written as square of 5 and 0.2 can be written in fraction form

log52log210 2log5log15 2log5log51 2log51log5  \Rightarrow \dfrac{{\log {5^2}}}{{\log \dfrac{2}{{10}}}} \\\ \Rightarrow \dfrac{{2\log 5}}{{\log \dfrac{1}{5}}} \\\ \Rightarrow \dfrac{{2\log 5}}{{\log {5^{ - 1}}}} \\\ \Rightarrow \dfrac{{2\log 5}}{{ - 1\log 5}} \\\

Cancelling log5,
2\Rightarrow - 2
Thus we simplified the last term. Now we will use it with the first two terms.
log2(x+y)=log25log0.2{\log _2}\left( {x + y} \right) = \dfrac{{\log 25}}{{\log 0.2}}

log2(x+y)=2 log(x+y)log2=2 log(x+y)=2log2 log(x+y)=log22 log(x+y)=log14  {\log _2}\left( {x + y} \right) = - 2 \\\ \Rightarrow \dfrac{{\log (x + y)}}{{\log 2}} = - 2 \\\ \Rightarrow \log (x + y) = - 2\log 2 \\\ \Rightarrow \log (x + y) = \log {2^{ - 2}} \\\ \Rightarrow \log (x + y) = \log \dfrac{1}{4} \\\

Cancelling log from both sides,
x+y=14\Rightarrow x + y = \dfrac{1}{4} →equation 1
Similarly using it with second ratio,
log3(xy)=log25log0.2{\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}

log3(xy)=2 log(xy)log3=2 log(xy)=2log3 log(xy)=log32 log(xy)=log19  {\log _3}\left( {x - y} \right) = - 2 \\\ \Rightarrow \dfrac{{\log (x - y)}}{{\log 3}} = - 2 \\\ \Rightarrow \log (x - y) = - 2\log 3 \\\ \Rightarrow \log (x - y) = \log {3^{ - 2}} \\\ \Rightarrow \log (x - y) = \log \dfrac{1}{9} \\\

Cancelling log from both sides,
xy=19\Rightarrow x - y = \dfrac{1}{9} →equation2
Now we will find the value of x in y form from equation2 x=y+19 \Rightarrow x = y + \dfrac{1}{9}
Putting this value in equation1 we get

y+19+y=14 2y=1419  \Rightarrow y + \dfrac{1}{9} + y = \dfrac{1}{4} \\\ \Rightarrow 2y = \dfrac{1}{4} - \dfrac{1}{9} \\\

Taking LCM,

2y=9436 2y=536 y=536×2 y=572  \Rightarrow 2y = \dfrac{{9 - 4}}{{36}} \\\ \Rightarrow 2y = \dfrac{5}{{36}} \\\ \Rightarrow y = \dfrac{5}{{36 \times 2}} \\\ \Rightarrow y = \dfrac{5}{{72}} \\\

This is the value of y.
Now let’s find the value of x. Putting this value of y in equation2

x=572+19 x=572+872 x=1372  \Rightarrow x = \dfrac{5}{{72}} + \dfrac{1}{9} \\\ \Rightarrow x = \dfrac{5}{{72}} + \dfrac{8}{{72}} \\\ \Rightarrow x = \dfrac{{13}}{{72}} \\\

Hence found the values of both x=1372x = \dfrac{{13}}{{72}} and y=572y = \dfrac{5}{{72}}.

Note: In this problem students just need to use simple logarithmic rules and apply them. Rules like,
1.logba=logalogb{\log _b}a = \dfrac{{\log a}}{{\log b}}
2.logan=nloga\log {a^n} = n\log a