Question
Mathematics Question on Complex Numbers and Quadratic Equations
If log2(9x−1+7)−log2(3x−1+1)=2 then x values are
A
0,2
B
1,3
C
1,4
D
1,2
Answer
1,2
Explanation
Solution
log2(9x−1+7)−log2(3x−1+1)=2
⇒log2(3x−1+19x−1+7)=2log22
⇒log2(3x−1+19x−1+7)=log222
⇒(3x−1+19x−1+7)=4
⇒(3x−1+1)(32)x−1+7=4
⇒3x−1+1(32)x−1+7=4
Let 3x−1=y
∴y+1y2+7=4
⇒y2+7=4y+4
⇒y2−4y+3=0
⇒y2−3y−y+3=0
⇒y(y−3)−1(y−3)=0
⇒(y−3)(y−1)=0
⇒y=3,1
If y = 3, then
3x−1=3
⇒x−1=1
⇒x=2
If y = 1, then
3x−1=30
⇒x−1=0
⇒x=1
∴x=1,2