Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If log2(9x1+7)log2(3x1+1)=2\log_2 (9 ^{x-1} + 7) - \log_2 (3^{x-1 } + 1) = 2 then xx values are

A

0,2

B

1,3

C

1,4

D

1,2

Answer

1,2

Explanation

Solution

log2(9x1+7)log2(3x1+1)=2log_{2} \left(9^{x-1} +7\right)-log_{2}\left(3^{x-1} +1\right) = 2
log2(9x1+73x1+1)=2log22\Rightarrow \,log_{2}\left(\frac{9^{x-1} +7}{3^{x-1} +1}\right) = 2 \,log_{2}\, 2
log2(9x1+73x1+1)=log222\Rightarrow log_{2}\left(\frac{9^{x-1} +7}{3^{x-1} +1}\right) = log_{2} 2^{2}
(9x1+73x1+1)=4\Rightarrow \left(\frac{9^{x-1} +7}{3^{x-1} +1}\right) = 4
(32)x1+7(3x1+1)=4\Rightarrow \frac{\left(3^{2}\right)^{x-1} +7}{\left(3^{x-1} +1\right)} = 4
(32)x1+73x1+1=4\Rightarrow \frac{\left(3^{2}\right)^{x-1} +7}{3^{x-1} +1} = 4
Let 3x1=y3^{x-1} = y
y2+7y+1=4\therefore \frac{y^{2}+7}{y+1} = 4
y2+7=4y+4\Rightarrow y^{2}+7=4y+4
y24y+3=0\Rightarrow y^{2}-4y+3 = 0
y23yy+3=0\Rightarrow y^{2} -3y-y+3 = 0
y(y3)1(y3)=0\Rightarrow y\left(y-3\right)-1\left(y-3\right) = 0
(y3)(y1)=0\Rightarrow \left(y-3\right)\left(y-1\right) = 0
y=3,1\Rightarrow y = 3,1
If y = 3, then
3x1=33^{x-1} = 3
x1=1\Rightarrow x-1 = 1
x=2\Rightarrow x = 2
If y = 1, then
3x1=303^{x-1} = 3^{0}
x1=0\Rightarrow x-1 = 0
x=1\Rightarrow x = 1
x=1,2\therefore x =1, 2