Solveeit Logo

Question

Mathematics Question on Functions

If log26+12x=log2(21x+8)log_{2}\,6+\frac{1}{2x} = log_{2}\left(2^{\frac{1}{x}} + 8\right), then the values of x are

A

14,13\frac{1}{4}, \frac{1}{3}

B

14,12\frac{1}{4}, \frac{1}{2}

C

14,12-\frac{1}{4}, \frac{1}{2}

D

13,12\frac{1}{3}, \frac{1}{^{-}2}

Answer

14,12\frac{1}{4}, \frac{1}{2}

Explanation

Solution

log26+log2212x=log2(21x+8)6212x=21x+8,let212x=alog_{2}\,6+log_{2}\, 2^{\frac{1}{2x}} = log_{2}\left(2^{\frac{1}{x}}+8\right)\,\Rightarrow 6\cdot2^{\frac{1}{2x}} = 2^{\frac{1}{x}}+8,\,\, let\, 2^{\frac{1}{2x}} = a
a26a+8=0a=2x=14,12\Rightarrow a^{2}-6a+8 = 0 \,\Rightarrow\,a = 2\,\Rightarrow\,x = \frac{1}{4}, \frac{1}{2}