Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

If log2[3+log3[4+log4(x1)]2=0log_2[3 + log_ 3[4 + log_4(x - 1)] - 2 = 0 then 4x equals

Answer

Given:
log2[3+log3(4+log4(x1))]2=0\log_2 \left[ 3 + \log_3 \left( 4 + \log_4 (x-1) \right) \right] - 2 = 0
Now, rearranging and simplifying:
log2[3+log3(4+log4(x1))]=2\log_2 \left[ 3 + \log_3 \left( 4 + \log_4 (x-1) \right) \right] = 2

Using the properties of logarithm: 3+log3(4+log4(x1))=223 + \log_3 \left( 4 + \log_4 (x-1) \right) = 2^2
3+log3(4+log4(x1))=43 + \log_3 \left( 4 + \log_4 (x-1) \right) = 4

Subtracting 3 from both sides:
log3(4+log4(x1))=1\log_3 \left( 4 + \log_4 (x-1) \right) = 1

This implies: 4+log4(x1)=34 + \log_4 (x-1) = 3
log4(x1)=1\log_4 (x-1) = -1

Now, using the properties of logarithm:
x1=41x-1 = 4^{-1}

x1=14x-1 = \frac{1}{4}

Now, adding 1 to both sides:
x=54x = \frac{5}{4}

To find 4x4x:  4x=4×54=5\ 4x = 4 \times \frac{5}{4} = 5