Solveeit Logo

Question

Mathematics Question on Differential equations

If log10(x3y3x3+y3)=2\log_{10} \left(\frac{x^{3} - y^{3} }{x^{3} + y^3} \right) = 2 then dydx=\frac{dy}{dx} =

A

xy\frac{x}{y}

B

yx- \frac{y}{x}

C

xy - \frac{x}{y}

D

yx \frac{y}{x}

Answer

yx \frac{y}{x}

Explanation

Solution

Given,
log10(x3y3x3+y3)=2\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2
x3y3x3+y3=102=100\Rightarrow \frac{x^{3}-y^{3}}{x^{3}+y^{3}}=10^{2}=100
x3y3=100(x3+y3)\Rightarrow x^{3}-y^{3}=100\left(x^{3}+y^{3}\right)
101y3=99x3\Rightarrow 101 y^{3}=-99 x^{3}
On differentiating both sides w.r.t. xx we get
101×3y2dydx=99(3x2)101 \times 3 y^{2} \frac{d y}{d x}=-99 \cdot\left(3 x^{2}\right)
101y2dydx=99x2\Rightarrow 101 y^{2} \frac{d y}{d x}=-99 x^{2}
On multiplying by xx both sides, we get
101xy2dydx=99x3\Rightarrow 101 x y^{2} \frac{d y}{d x}=-99 x^{3}
dydx=99x3101xy2\Rightarrow \frac{d y}{d x}=\frac{-99 x^{3}}{101 x y^{2}}
dydx=101y3101xy2[99x3=101y3]\Rightarrow \frac{d y}{d x}=\frac{101 y^{3}}{101 x y^{2}} \left[\because-99 x^{3}=101 y^{3}\right]
dydx=yx\Rightarrow \frac{d y}{d x}=\frac{y}{x}