Solveeit Logo

Question

Question: If \[{\log _{10}}2 = 0.3010\], then the value of \[{\log _{10}}80\] is A.\[1.6020\] B.\[1.9030\]...

If log102=0.3010{\log _{10}}2 = 0.3010, then the value of log1080{\log _{10}}80 is
A.1.60201.6020
B.1.90301.9030
C.3.90303.9030
D.None of these

Explanation

Solution

Hint Here, we will use the logarithm property, logbac=logba+logbc{\log _b}ac = {\log _b}a + {\log _b}cand then the power rule of logarithm, logb(ac)=clogba{\log _b}\left( {{a^c}} \right) = c{\log _b}a. Then we will use the property of logarithm, logbb=1{\log _b}b = 1 accordingly in the given expression to simplify it.

Complete step-by-step answer:
We are given that the log102=0.3010{\log _{10}}2 = 0.3010.
We will now rewrite the expression log1080{\log _{10}}80, we get
log10(8×10)\Rightarrow {\log _{10}}\left( {8 \times 10} \right)
Using the logarithm property, logbac=logba+logbc{\log _b}ac = {\log _b}a + {\log _b}c in the above expression, we get

log108+log1010 log10(23)+log1010  \Rightarrow {\log _{10}}8 + {\log _{10}}10 \\\ \Rightarrow {\log _{10}}\left( {{2^3}} \right) + {\log _{10}}10 \\\

Let us now make use of the power rule of logarithm, logb(ac)=clogba{\log _b}\left( {{a^c}} \right) = c{\log _b}a.
So, on applying this rule in the above equation, we get
3log102+log1010\Rightarrow 3{\log _{10}}2 + {\log _{10}}10
Using the property of logarithm, logbb=1{\log _b}b = 1 in the above equation, we get
3log102+1\Rightarrow 3{\log _{10}}2 + 1
Substituting the value of log102{\log _{10}}2 in the above expression, we get

3×0.3010+1 0.9030+1 1.9030  \Rightarrow 3 \times 0.3010 + 1 \\\ \Rightarrow 0.9030 + 1 \\\ \Rightarrow 1.9030 \\\

Thus, the value of log1080{\log _{10}}80 is 1.90301.9030.
Hence, option B is correct.

Note The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is ee.