Question
Mathematics Question on Logarithmic Differentiation
If log0.2(x−1)>log0.04(x+5), then
A
−1<x<4
B
2<x<3
C
1<x<4
D
1<x<3
Answer
1<x<4
Explanation
Solution
We have, log0.2(x−1)>log0.04(x+5) ⇒log0.2(x−1)>log(0.2)2(x+5) ⇒log0.2(x−1)>21log0.2(x+5) ⇒2log0.2(x−1)>log0.2(x+5) ⇒log0.2(x−1)2>log0.2(x+5) ⇒(x−1)2<x+5 [∵logax>logay⇒x<y, if 0<a<1] ⇒x2−2x+1<x+5 ⇒x2−3x−4<0 ⇒x2−4x+x−4<0 ⇒x(x−4)+1(x−4)<0 ⇒x(x−4)+1(x−4)<0 ⇒(x−4)(x+1)<0 ⇒x∈(−1,4) But x>1 ⇒x∈(1,4)