Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

If log0.2(x1)>log0.04(x+5)\log _{0.2}(x-1)>\log _{0.04}(x+5), then

A

1<x<4-1 < x < 4

B

2<x<32 < x < 3

C

1<x<41 < x < 4

D

1<x<31 < x < 3

Answer

1<x<41 < x < 4

Explanation

Solution

We have, log0.2(x1)>log0.04(x+5)\log _{0.2}(x-1)>\log _{0.04}(x+5) log0.2(x1)>log(0.2)2(x+5)\Rightarrow \log _{0.2}(x-1)>\log _{(0.2)^{2}}(x+5) log0.2(x1)>12log0.2(x+5)\Rightarrow \log _{0.2}(x-1)>\frac{1}{2} \log _{0.2}(x+5) 2log0.2(x1)>log0.2(x+5)\Rightarrow 2 \log _{0.2}(x-1)>\log _{0.2}(x+5) log0.2(x1)2>log0.2(x+5)\Rightarrow \log _{0.2}(x-1)^{2}>\log _{0.2}(x+5) (x1)2<x+5\Rightarrow (x-1)^{2}< x+5 [logax>logayx<y\left[\because \log _{a} x >\log _{a} y \Rightarrow x< y\right., if 0<a<1]\left.0< a< 1\right] x22x+1<x+5\Rightarrow x^{2}-2 x+1< x+5 x23x4<0\Rightarrow x^{2}-3 x-4<0 x24x+x4<0\Rightarrow x^{2}-4 x+x-4< 0 x(x4)+1(x4)<0\Rightarrow x(x-4)+1(x-4)<0 x(x4)+1(x4)<0\Rightarrow x(x-4)+1(x-4)<0 (x4)(x+1)<0\Rightarrow (x-4)(x+1)<0 x(1,4)\Rightarrow x \in(-1,4) But x>1x>1 x(1,4)\Rightarrow x \in(1,4)