Solveeit Logo

Question

Question: If \[{\log _{0.2}}\left( {x - 1} \right) > {\log _{0.04}}\left( {x + 5} \right)\] then solve for the...

If log0.2(x1)>log0.04(x+5){\log _{0.2}}\left( {x - 1} \right) > {\log _{0.04}}\left( {x + 5} \right) then solve for the value of xx
A. 1<x<4 - 1 < x < 4
B. 2<x<32 < x < 3
C. 1<x<41 < x < 4
D. 1<x<31 < x < 3

Explanation

Solution

Hint: We can cancel logarithms on both sides whenever they have the same bases and then the inequality sign is reversed. In a logarithmic function logxa{\log _x}a is positive when a>0a > 0. So, use this concept to reach the solution of the problem.

Complete step-by-step solution -
Given log0.2(x1)>log0.04(x+5){\log _{0.2}}\left( {x - 1} \right) > {\log _{0.04}}\left( {x + 5} \right)
We can write 0.040.04as (0.2)2{\left( {0.2} \right)^2} then we get
log0.2(x1)>log(0.2)2(x+5)\Rightarrow {\log _{0.2}}\left( {x - 1} \right) > {\log _{{{\left( {0.2} \right)}^2}}}\left( {x + 5} \right)
We know that logx2a=12logxa{\log _{{x^2}}}a = \dfrac{1}{2}{\log _x}a.
By using the above formula, we have

log0.2(x1)>12log0.2(x+5) 2log0.2(x1)>log0.2(x+5)  \Rightarrow {\log _{0.2}}\left( {x - 1} \right) > \dfrac{1}{2}{\log _{0.2}}\left( {x + 5} \right) \\\ \Rightarrow 2{\log _{0.2}}\left( {x - 1} \right) > {\log _{0.2}}\left( {x + 5} \right) \\\

Also, we know that 2logxa=logxa22{\log _x}a = {\log _x}{a^2}.
So, we have
log0.2(x1)2>log0.2(x+5)\Rightarrow {\log _{0.2}}{\left( {x - 1} \right)^2} > {\log _{0.2}}\left( {x + 5} \right)
Cancelling logarithms on both sides as they have common bases, then the inequality sign also gets reversed.
Hence, we have

(x1)2<(x+5) x22x+1<x+5 x22xx+15<0 x23x4<0 x24x+x4<0  \Rightarrow {\left( {x - 1} \right)^2} < \left( {x + 5} \right) \\\ \Rightarrow {x^2} - 2x + 1 < x + 5 \\\ \Rightarrow {x^2} - 2x - x + 1 - 5 < 0 \\\ \Rightarrow {x^2} - 3x - 4 < 0 \\\ \Rightarrow {x^2} - 4x + x - 4 < 0 \\\

Grouping the common terms, we have

x(x4)+1(x4)<0 (x+1)(x4)<0  \Rightarrow x\left( {x - 4} \right) + 1\left( {x - 4} \right) < 0 \\\ \Rightarrow \left( {x + 1} \right)\left( {x - 4} \right) < 0 \\\

We know that if (xa)(xb)<0\left( {x - a} \right)\left( {x - b} \right) < 0 then it can be written as a<x<ba < x < b
By using the above formula, we get
1<x<4\Rightarrow - 1 < x < 4
Now consider log0.2(x1){\log _{0.2}}\left( {x - 1} \right)
We know that in the logarithmic function logxa{\log _x}a is positive when a>0a > 0
So, in the logarithm log0.2(x1){\log _{0.2}}\left( {x - 1} \right) we have x1>0x - 1 > 0 i.e., x>1x > 1
From x>1x > 1 and 1<x<4 - 1 < x < 4 we get
1<x<4\therefore 1 < x < 4
Thus, the correct option is C. 1<x<41 < x < 4

Note: If (xa)(xb)<0\left( {x - a} \right)\left( {x - b} \right) < 0 then it can be written as a<x<ba < x < b. The equation logx=100\log x = 100 is another way of writing 10x=100{10^x} = 100. This relationship makes it possible to remove logarithms from an equation by raising both sides to the same exponent as the base of the logarithm.