Solveeit Logo

Question

Question: If \[\ln \left( a+c \right)\], \[\ln \left( c-a \right)\] and \[\ln \left( a-2b+c \right)\] are in A...

If ln(a+c)\ln \left( a+c \right), ln(ca)\ln \left( c-a \right) and ln(a2b+c)\ln \left( a-2b+c \right) are in A.P. then determine that elements aa, bb and cc are terms of which series.

(a) aa, bb and cc are in A.P.

(b) a2{{a}^{2}}, b2{{b}^{2}} and c2{{c}^{2}} are in A.P.

(c) aa, bb and cc are in G.P.

(d) aa, bb and cc are in H.P.

Explanation

Solution

In this question, We are given that ln(a+c)\ln \left( a+c \right), ln(ca)\ln \left( c-a \right) and ln(a2b+c)\ln \left( a-2b+c \right) are in A.P. Then there will be a common difference, say dd between the consecutive terms of the A.P. Then determine an expression for aa, bb and cc by using properties of logarithms and hence find the relation between aa, bb and cc.

Complete step-by-step answer:

We are given that ln(a+c)\ln \left( a+c \right), ln(ca)\ln \left( c-a \right) and ln(a2b+c)\ln \left( a-2b+c \right) are in A.P.

That is the elements ln(a+c)\ln \left( a+c \right), ln(ca)\ln \left( c-a \right) and ln(a2b+c)\ln \left( a-2b+c \right) are terms of an Arithmetic progression. Hence there will be a common difference between every consecutive term, say dd.

Then we have

ln(ca)ln(a+c)=d..................(1)\ln \left( c-a \right)-\ln \left( a+c \right)=d..................(1)

And

ln(a2b+c)ln(ca)=d.............(2)\ln \left( a-2b+c \right)-\ln \left( c-a \right)=d.............(2)

Now equating the value of the common difference dd in equation (1) and equation (2), we get

ln(a2b+c)ln(ca)=ln(ca)ln(a+c)\ln \left( a-2b+c \right)-\ln \left( c-a \right)=\ln \left( c-a \right)-\ln \left( a+c \right)

We will now take the terms ln(ca)\ln \left( c-a \right) on one side of the equation.

ln(a2b+c)+ln(a+c)=2ln(ca)...............(3)\ln \left( a-2b+c \right)+\ln \left( a+c \right)=2\ln \left( c-a \right)...............(3)

Now using the property of logarithm that lna+lnb=ln(ab)\ln a+\ln b=\ln \left( ab \right), we will get

ln(a2b+c)+ln(a+c)=ln((a2b+c)(a+c)).............(4)\ln \left( a-2b+c \right)+\ln \left( a+c \right)=\ln \left( \left( a-2b+c \right)\left( a+c \right) \right).............(4)

Using equation (4) in equation (3), we get

ln((a2b+c)(a+c))=2ln(ca)...............(5)\ln \left( \left( a-2b+c \right)\left( a+c \right) \right)=2\ln \left( c-a \right)...............(5)

Again we will use the other property of logarithm, say alnx=lnxaa\ln x=\ln {{x}^{a}}. Thus we have

2ln(ca)=ln(ca)22\ln \left( c-a \right)=\ln {{\left( c-a \right)}^{2}}

Using the above value in equation (5), we get

ln((a2b+c)(a+c))=ln(ca)2...............(6)\ln \left( \left( a-2b+c \right)\left( a+c \right) \right)=\ln {{\left( c-a \right)}^{2}}...............(6)

Now we know the property that if lnx=lny\ln x=\ln y, then x=yx=y.

Using the above property in equation (6), we get

(a2b+c)(a+c)=(ca)2\left( a-2b+c \right)\left( a+c \right)={{\left( c-a \right)}^{2}}

On expanding the above equation we have

a(a2b+c)+c(a2b+c)=(ca)2a\left( a-2b+c \right)+c\left( a-2b+c \right)={{\left( c-a \right)}^{2}}

a22ab+ac+ca2bc+c2=c22ac+a2\Rightarrow {{a}^{2}}-2ab+ac+ca-2bc+{{c}^{2}}={{c}^{2}}-2ac+{{a}^{2}}

Now on cancelling the equal terms of both sides of the above equation we get

2ab+ac+ca2bc=2ac-2ab+ac+ca-2bc=-2ac

2ab+2ac2bc=2ac\Rightarrow -2ab+2ac-2bc=-2ac

4ac=2ab+2bc\Rightarrow 4ac=2ab+2bc

Dividing the above equation by 2, we get

2ac=ab+bc2ac=ab+bc

Again of dividing the equation 2ac=ab+bc2ac=ab+bc by abcabc , we have

2acabc=ababc+bcabc\dfrac{2ac}{abc}=\dfrac{ab}{abc}+\dfrac{bc}{abc}

2b=1a+1c\Rightarrow \dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}

Hence aa, bb and cc are in H.P.

So, the correct answer is “Option D”.

Note: In this problem, we will use required properties of logarithm. Also keep in mind the properties of terms in A.P, G.P and H.P. Then check which property is being satisfied by the terms aa, bb and cc to choose the correct answer.