Question
Question: If linear function \(f\left( x \right)\) and \(g\left( x \right)\) satisfy \(\int {\left[ {\left( {3...
If linear function f(x) and g(x) satisfy ∫[(3x−1)cosx+(1−2x)sinx]dx=f(x)cosx+g(x)+c, then
A.f(x)=3(x−1)
B.f(x)=3x−5
C.g(x)=3(x−1)
D.g(x)=3+x
Solution
Hint : In order to find the correct option, start with solving the equation on the left side of the function using the product rule, ∫uvdx=u∫vdx−∫u′(∫vdx)dx. Solve the two operands of the equations separately and substitute at the original equation at last. Solve and get the results.
Formula used:
∫uvdx=u∫vdx−∫u′(∫vdx)dx
∫cosxdx=sinx+C1
∫sinxdx=−cosx+C2
Complete step-by-step answer :
We are given with an equation ∫[(3x−1)cosx+(1−2x)sinx]dx=f(x)cosx+g(x)+c., where f(x) and g(x) are two linear functions.
We are initiating with solving the left-hand side of the equation that is ∫[(3x−1)cosx+(1−2x)sinx]dx
We can split the integration into operands and we get:
⇒∫(3x−1)cosxdx+∫(1−2x)sinxdx ……(1)
We would integrate each operand separately, starting with the first operand:
∫(3x−1)cosxdx
We can see it also contains two different functions inside the bracket, which is (3x−1)andcosx, so we would use the product rule of differentiation, that is:
∫uvdx=u∫vdx−∫u′(∫vdx)dx
Comparing ∫uvdxwith ∫(3x−1)cosxdx, we get:
u=(3x−1)
v=cosx
Substituting the values of u and v in the above equation and we get:
⇒∫(3x−1)cosxdx=(3x−1)∫cosxdx−∫dxd(3x−1)(∫cosxdx)dx
Since, we know that ∫cosxdx=sinx+C1 and dxd(3x)=3. So, substituting the values in the above equation and we get:
⇒∫(3x−1)cosxdx=(3x−1)sinx+C1−∫3sinxdx
⇒∫(3x−1)cosxdx=(3x−1)sinx+C1−3∫sinxdx
Since, we know that ∫sinxdx=−cosx+C2, so substituting it:
⇒∫(3x−1)cosxdx=(3x−1)sinx+C1−3(−cosx+C2)
Opening the braces:
⇒∫(3x−1)cosxdx=3xsinx−sinx+C1+3cosx+C2
⇒∫(3x−1)cosxdx=3xsinx−sinx+3cosx+C1 …….(2)
Similarly, solving for the second operand, and we get:
∫(1−2x)sinxdx
Here also we can see it also contains two different functions inside the bracket, which is (1−2x)andsinx, so we would use the product rule of differentiation, that is:
∫uvdx=u∫vdx−∫u′(∫vdx)dx
Comparing ∫uvdxwith ∫(1−2x)sinxdx, we get:
u=(1−2x)
v=sinx
Substituting the values of u and v in the above equation and we get:
⇒∫(1−2x)sinxdx=(1−2x)∫sinxdx−∫dxd(1−2x)(∫sinxdx)dx
Since, we know that ∫sinxdx=−cosx+C3 and dxd(−2x)=−2. So, substituting the values in the above equation and we get:
⇒∫(1−2x)sinxdx=(1−2x)(−cosx)+C3−∫(−2)(−cosx)dx
⇒∫(1−2x)sinxdx=(1−2x)(−cosx)+C3+2∫(−cosx)dx
⇒∫(1−2x)sinxdx=(1−2x)(−cosx)+C3−2∫cosxdx
Since, we know that ∫cosxdx=sinx+C4, so substituting it:
⇒∫(1−2x)sinxdx=(1−2x)(−cosx)+C3−2(sinx+C4)
Opening the braces:
⇒∫(1−2x)sinxdx=−cosx+2xcosx+C3−2sinx−2C4
⇒∫(1−2x)sinxdx=−cosx+2xcosx−2sinx+C2 …….(3)
Substituting the values of equation 2 and equation 3 in equation 1, we get:
⇒∫(3x−1)cosxdx+∫(1−2x)sinxdx
⇒3xsinx−sinx+3cosx+C1+(−cosx+2xcosx−2sinx+C2)
Solving the equation:
⇒3xsinx−sinx+3cosx+C1−cosx+2xcosx−2sinx+C2
⇒3xsinx−3sinx+2cosx+2xcosx+C
Taking sinx and cosx common in braces and we get:
⇒(3x−3)sinx+(2+2x)cosx+C
⇒(2+2x)cosx+(3x−3)sinx+C
Comparing this equation with the right-hand side of the equation ∫[(3x−1)cosx+(1−2x)sinx]dx=f(x)cosx+g(x)+c, we get:
⇒(2+2x)cosx+(3x−3)sinx+C=f(x)cosx+g(x)+c
This shows
f(x)=(2+2x)=2(1+x)
g(x)=(3x−3)=3(x−1)
So, the correct answer is “Option C”.
Note : It’s important to remember the formulas of differentiation and integration to solve this type of question.
We have taken C1+C2=C1 and other also the same because the sum of two constant terms will also be a constant term.