Solveeit Logo

Question

Question: If linear function \(f\left( x \right)\) and \(g\left( x \right)\) satisfy \(\int {\left[ {\left( {3...

If linear function f(x)f\left( x \right) and g(x)g\left( x \right) satisfy [(3x1)cosx+(12x)sinx]dx=f(x)cosx+g(x)+c\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} , then
A.f(x)=3(x1)f\left( x \right) = 3\left( {x - 1} \right)
B.f(x)=3x5f\left( x \right) = 3x - 5
C.g(x)=3(x1)g\left( x \right) = 3\left( {x - 1} \right)
D.g(x)=3+xg\left( x \right) = 3 + x

Explanation

Solution

Hint : In order to find the correct option, start with solving the equation on the left side of the function using the product rule, uvdx=uvdxu(vdx)dx\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx. Solve the two operands of the equations separately and substitute at the original equation at last. Solve and get the results.
Formula used:
uvdx=uvdxu(vdx)dx\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx
cosxdx=sinx+C1\int {\cos xdx = \sin x + C_1}
sinxdx=cosx+C2\int {\sin xdx = - \cos x + C_2}

Complete step-by-step answer :
We are given with an equation [(3x1)cosx+(12x)sinx]dx=f(x)cosx+g(x)+c\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} ., where f(x)f\left( x \right) and g(x)g\left( x \right) are two linear functions.
We are initiating with solving the left-hand side of the equation that is [(3x1)cosx+(12x)sinx]dx\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx}
We can split the integration into operands and we get:
(3x1)cosxdx+(12x)sinxdx\Rightarrow \int {\left( {3x - 1} \right)\cos xdx + \int {\left( {1 - 2x} \right)\sin xdx} } ……(1)
We would integrate each operand separately, starting with the first operand:
(3x1)cosxdx\int {\left( {3x - 1} \right)\cos xdx}
We can see it also contains two different functions inside the bracket, which is (3x1)andcosx\left( {3x - 1} \right){{ and }}\cos x, so we would use the product rule of differentiation, that is:
uvdx=uvdxu(vdx)dx\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx
Comparing uvdx\smallint u{{ }}v{{ }}dx{{ }}with (3x1)cosxdx\int {\left( {3x - 1} \right)\cos xdx} , we get:
u=(3x1)u = \left( {3x - 1} \right)
v=cosxv = \cos x
Substituting the values of u and v in the above equation and we get:
(3x1)cosxdx=(3x1)cosxdxd(3x1)dx(cosxdx)dx\Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right)\smallint {{ }}\cos xdx{{ }} - \smallint \dfrac{{d\left( {3x - 1} \right)}}{{dx}}{{ }}\left( {\smallint \cos x{{ }}dx} \right){{ }}dx
Since, we know that cosxdx=sinx+C1\int {\cos xdx = \sin x + C_1} and d(3x)dx=3\dfrac{{d\left( {3x} \right)}}{{dx}} = 3. So, substituting the values in the above equation and we get:
(3x1)cosxdx=(3x1)sinx+C13sinxdx\Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - \smallint 3{{ sinx }}dx
(3x1)cosxdx=(3x1)sinx+C13sinxdx\Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - 3\smallint {{sinx }}dx
Since, we know that sinxdx=cosx+C2\int {\sin xdx = - \cos x + C_2} , so substituting it:
(3x1)cosxdx=(3x1)sinx+C13(cosx+C2)\Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - 3\left( { - \cos x + C_2} \right)
Opening the braces:
(3x1)cosxdx=3xsinxsinx+C1+3cosx+C2\Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ 3xsinx - sinx + C_1 + }}3\cos x + C_2
(3x1)cosxdx=3xsinxsinx+3cosx+C1\Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ 3xsinx - sinx + }}3\cos x + C_1 …….(2)
Similarly, solving for the second operand, and we get:
(12x)sinxdx\int {\left( {1 - 2x} \right)\sin xdx}
Here also we can see it also contains two different functions inside the bracket, which is (12x)andsinx\left( {1 - 2x} \right){{ and sin}}x, so we would use the product rule of differentiation, that is:
uvdx=uvdxu(vdx)dx\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx
Comparing uvdx\smallint u{{ }}v{{ }}dx{{ }}with (12x)sinxdx\int {\left( {1 - 2x} \right)\sin xdx} , we get:
u=(12x)u = \left( {1 - 2x} \right)
v=sinxv = \sin x
Substituting the values of u and v in the above equation and we get:
(12x)sinxdx=(12x)sinxdxd(12x)dx(sinxdx)dx\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} {{ }} = {{ }}\left( {1 - 2x} \right)\smallint \sin xdx{{ }} - \smallint \dfrac{{d\left( {1 - 2x} \right)}}{{dx}}{{ }}\left( {\smallint \sin x{{ }}dx} \right){{ }}dx
Since, we know that sinxdx=cosx+C3\int {\sin xdx = - \cos x + C_3} and d(2x)dx=2\dfrac{{d\left( { - 2x} \right)}}{{dx}} = - 2. So, substituting the values in the above equation and we get:
(12x)sinxdx=(12x)(cosx)+C3(2)(cosx)dx\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 }} - \smallint \left( { - 2} \right){{ }}\left( { - \cos x} \right){{ }}dx
(12x)sinxdx=(12x)(cosx)+C3+2(cosx)dx\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 + 2}}\smallint {{ }}\left( { - \cos x} \right){{ }}dx
(12x)sinxdx=(12x)(cosx)+C32cosxdx\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 - 2}}\smallint {{ }}\cos x{{ }}dx
Since, we know that cosxdx=sinx+C4\int {\cos xdx = \sin x + C_4} , so substituting it:
(12x)sinxdx=(12x)(cosx)+C32(sinx+C4)\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 - 2}}\left( {\sin x + C_4} \right)
Opening the braces:
(12x)sinxdx=cosx+2xcosx+C32sinx2C4\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ - cosx + 2xcosx + C_3 - 2sinx - 2C_4}}
(12x)sinxdx=cosx+2xcosx2sinx+C2\Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ - cosx + 2xcosx - 2sinx + C_2}} …….(3)
Substituting the values of equation 2 and equation 3 in equation 1, we get:
(3x1)cosxdx+(12x)sinxdx\Rightarrow \int {\left( {3x - 1} \right)\cos xdx + \int {\left( {1 - 2x} \right)\sin xdx} }
3xsinxsinx+3cosx+C1+(cosx+2xcosx2sinx+C2)\Rightarrow {{3xsinx - sinx + }}3\cos x + C_1 + \left( {{{ - cosx + 2xcosx - 2sinx + C_2}}} \right)
Solving the equation:
3xsinxsinx+3cosx+C1cosx+2xcosx2sinx+C2\Rightarrow {{3xsinx - sinx + }}3\cos x + C_1{{ - cosx + 2xcosx - 2sinx + C_2}}
3xsinx3sinx+2cosx+2xcosx+C\Rightarrow {{3xsinx - 3sinx + 2}}\cos x{{ + 2xcosx + C}}
Taking sinx\sin x and cosx\cos x common in braces and we get:
(3x3)sinx+(2+2x)cosx+C\Rightarrow \left( {{{3x - 3}}} \right){{sinx + }}\left( {{{2 + 2x}}} \right)\cos x{{ + C}}
(2+2x)cosx+(3x3)sinx+C\Rightarrow \left( {{{2 + 2x}}} \right)\cos x{{ + }}\left( {{{3x - 3}}} \right){{sinx}} + {{C}}
Comparing this equation with the right-hand side of the equation [(3x1)cosx+(12x)sinx]dx=f(x)cosx+g(x)+c\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} , we get:
(2+2x)cosx+(3x3)sinx+C=f(x)cosx+g(x)+c\Rightarrow \left( {{{2 + 2x}}} \right)\cos x{{ + }}\left( {{{3x - 3}}} \right){{sinx}} + {{C = }}f\left( x \right)\cos x + g\left( x \right) + c
This shows
f(x)=(2+2x)=2(1+x)f\left( x \right) = \left( {2 + 2x} \right) = 2\left( {1 + x} \right)
g(x)=(3x3)=3(x1)g\left( x \right) = \left( {3x - 3} \right) = 3\left( {x - 1} \right)
So, the correct answer is “Option C”.

Note : It’s important to remember the formulas of differentiation and integration to solve this type of question.
We have taken C1+C2=C1C_1 + C_2 = C_1 and other also the same because the sum of two constant terms will also be a constant term.