Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

If linear density of a rod of length 3 m varies as λ=2+x,\lambda =2+x, then the position of the centre of gravity of the rod is:

A

73m\frac{7}{3}m

B

127m\frac{12}{7}m

C

107m\frac{10}{7}m

D

97m\frac{9}{7}m

Answer

127m\frac{12}{7}m

Explanation

Solution

Let rod is placed along xx- axis. Mass of element PQ of length
dxdx situated at x=xx=x is


dm=λdx=(2+x)dxdm=\lambda dx=(2+x)dx
The COM of the element has coordinates (x,0,0).(x,0,0). Therefore, xx- coordinate of COM of the rod will be
{{x}_{COM}}=\frac{\int_\limits{0}^{3}{xdm}}{\int_\limits{0}^{3}{dm}}
=\frac{\int_\limits{0}^{3}{x(2+x)dx}}{\int_\limits{0}^{3}{(2+x)dx}}
=\frac{\int_\limits{0}^{3}{(2x+{{x}^{2}})dx}}{\int_\limits{0}^{3}{(2+x)dx}}
=[2x22+x33]03[2x+x22]03=\frac{\left[ \frac{2{{x}^{2}}}{2}+\frac{{{x}^{3}}}{3} \right]_{0}^{3}}{\left[ 2x+\frac{{{x}^{2}}}{2} \right]_{0}^{3}}
=[(3)2+(3)33][2×3+(3)22]=\frac{\left[ {{(3)}^{2}}+\frac{{{(3)}^{3}}}{3} \right]}{\left[ 2\times 3+\frac{{{(3)}^{2}}}{2} \right]}
=9+96+9/2=\frac{9+9}{6+9/2}
=18×221=\frac{18\times 2}{21}
=127m=\frac{12}{7}m