Question
Physics Question on System of Particles & Rotational Motion
If linear density of a rod of length 3 m varies as λ=2+x, then the position of the centre of gravity of the rod is:
A
37m
B
712m
C
710m
D
79m
Answer
712m
Explanation
Solution
Let rod is placed along x− axis. Mass of element PQ of length
dx situated at x=x is
dm=λdx=(2+x)dx
The COM of the element has coordinates (x,0,0). Therefore, x− coordinate of COM of the rod will be
{{x}_{COM}}=\frac{\int_\limits{0}^{3}{xdm}}{\int_\limits{0}^{3}{dm}}
=\frac{\int_\limits{0}^{3}{x(2+x)dx}}{\int_\limits{0}^{3}{(2+x)dx}}
=\frac{\int_\limits{0}^{3}{(2x+{{x}^{2}})dx}}{\int_\limits{0}^{3}{(2+x)dx}}
=[2x+2x2]03[22x2+3x3]03
=[2×3+2(3)2][(3)2+3(3)3]
=6+9/29+9
=2118×2
=712m