Solveeit Logo

Question

Question: If linear density of a rod of length 3 m varies as then the position of the centre of gravity of the...

If linear density of a rod of length 3 m varies as then the position of the centre of gravity of the rod is :

A

73m\frac{7}{3}m

B

127m\frac{12}{7}m

C

107m\frac{10}{7}m

D

97m\frac{9}{7}m

Answer

127m\frac{12}{7}m

Explanation

Solution

Linear density of the rod varies with distance

dmdx=λ\frac{dm}{dx} = \lambda (given) 6mu6mudm=λdx\Rightarrow \mspace{6mu}\mspace{6mu} dm = \lambda dx

Position of centre of mass

xcm=dm6mu×6muxdm6mu=03(λ6mudx)×x03λdx=03(26mu+x)×xdx23(2+x)6mudx=[x2+x33]03[2x+x32]03x_{cm} = \frac{\int_{}^{}{dm\mspace{6mu} \times \mspace{6mu} x}}{\int_{}^{}{dm\mspace{6mu}}} = \frac{\int_{0}^{3}{(\lambda\mspace{6mu} dx) \times x}}{\int_{0}^{3}{\lambda dx}} = \frac{\int_{0}^{3}{(2\mspace{6mu} + x) \times xdx}}{\int_{2}^{3}{(2 + x)\mspace{6mu} dx}} = \frac{\left\lbrack x^{2} + \frac{x^{3}}{3} \right\rbrack_{0}^{3}}{\left\lbrack 2x + \frac{x^{3}}{2} \right\rbrack_{0}^{3}}

=9+96+92=3621=127m= \frac{9 + 9}{6 + \frac{9}{2}} = \frac{36}{21} = \frac{12}{7}m 23