Solveeit Logo

Question

Mathematics Question on Ellipse

If line y=2x+cy = 2\,x + c is a normal to the ellipse x29+y216=1\frac{x^2}{9} + \frac{y^2}{16} = 1 , then

A

c=23c = \frac{2}{3}

B

c=735c = \sqrt{ \frac{73}{5}}

C

c=1473c = \frac{14}{\sqrt{73}}

D

c=57c = \sqrt{ \frac{5}{7}}

Answer

c=1473c = \frac{14}{\sqrt{73}}

Explanation

Solution

If the line y=mx+cy = mx + c is a normal to the ellipse
x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 , then
c2=m2(a2b2)2a2+b2m2c^{2} = \frac{m^{2}\left(a^{2} - b^{2}\right)^{2}}{a^{2} + b^{2} m^{2}}
[Here, m=2,a2=9m = 2 ,a^{2} = 9 and b2=16b^{2} = 16]
=(2)2(916)29+16×(2)2= \frac{\left(2\right)^{2} \left(9 - 16\right)^{2}}{9+16 \times\left(2\right)^{2}}
=4×499+64=4×4973=19673= \frac{4 \times49}{9+64} = \frac{4 \times49}{73}=\frac{196}{73}
c=1473\therefore \, \, c = \frac{14}{\sqrt{73}}