Question
Mathematics Question on Straight lines
If limx→∞(x2+x+1x+1−px−q)=−3, then p and q is:
A
(A) p = 1, q = 3
B
(B) p = 2, q = 3
C
(C) p = 3, q = 1
D
(D) p = 3, q = 2
Answer
(A) p = 1, q = 3
Explanation
Solution
Explanation:
Given: limx→∞(x2+x+1x+1−px−q)=−3On simplifying, we get:⇒limx→∞(x2+x+1−px2−px−qx−qx+1)=−3⇒limx→∞(x2(1−p)+x(1−p−q)+1−qx+1)=−3 As we can see limit gives finite value. So, this is possible only when the coefficient of higher degree term will be zero.Therefore, (1−p)=0Or, p=1⇒limx→∞(x(1−p−q)+1−qx+1)=−3 ....(1)Dividing and multiplying by x in both numerator and denominator, we get:⇒limx→∞(x[(1−p−q)+(1−q)x]x[1+1x])=−3⇒limx→∞([(1−p−q)+(1−q)x][1+1x])=−3⇒([(1−p−q)+0][1+0])=−3⇒(1−p−q)=−3 ⇒(1−1−q)=−3(∵p=1)∴q=3Hence, the correct option is (A).