Solveeit Logo

Question

Question: If $\lim\limits_{x\to\infty} (\frac{x^3+1}{x+1}-ax^2-bx-c)=4$ where $a,b,c \in R$, then, the value o...

If limx(x3+1x+1ax2bxc)=4\lim\limits_{x\to\infty} (\frac{x^3+1}{x+1}-ax^2-bx-c)=4 where a,b,cRa,b,c \in R, then, the value of a+b+c|a+b+c| is:

Answer

3

Explanation

Solution

To evaluate the given limit and find the values of a,b,ca, b, c, we first simplify the expression inside the limit.

The given limit is: limx(x3+1x+1ax2bxc)=4\lim\limits_{x\to\infty} \left(\frac{x^3+1}{x+1}-ax^2-bx-c\right)=4

Step 1: Simplify the rational expression x3+1x+1\frac{x^3+1}{x+1}. We know the sum of cubes factorization: x3+1=(x+1)(x2x+1)x^3+1 = (x+1)(x^2-x+1). So, for x1x \neq -1: x3+1x+1=(x+1)(x2x+1)x+1=x2x+1\frac{x^3+1}{x+1} = \frac{(x+1)(x^2-x+1)}{x+1} = x^2-x+1

Step 2: Substitute the simplified expression back into the limit. limx(x2x+1ax2bxc)=4\lim\limits_{x\to\infty} (x^2-x+1 - ax^2 - bx - c) = 4

Step 3: Group the terms by powers of xx. limx((1a)x2+(1b)x+(1c))=4\lim\limits_{x\to\infty} ((1-a)x^2 + (-1-b)x + (1-c)) = 4

Step 4: Determine the values of a,b,ca, b, c for the limit to be finite. For the limit of a polynomial as xx \to \infty to be a finite value, all terms with powers of xx greater than 0 must vanish (i.e., their coefficients must be zero). Otherwise, the limit would be ±\pm\infty.

Therefore, the coefficient of x2x^2 must be zero: 1a=0    a=11-a = 0 \implies a=1

Now, substitute a=1a=1 back into the expression: limx(0x2+(1b)x+(1c))=4\lim\limits_{x\to\infty} (0 \cdot x^2 + (-1-b)x + (1-c)) = 4 limx((1b)x+(1c))=4\lim\limits_{x\to\infty} ((-1-b)x + (1-c)) = 4

Next, the coefficient of xx must be zero: 1b=0    b=1-1-b = 0 \implies b=-1

Substitute b=1b=-1 back into the expression: limx(0x+(1c))=4\lim\limits_{x\to\infty} (0 \cdot x + (1-c)) = 4 limx(1c)=4\lim\limits_{x\to\infty} (1-c) = 4

Finally, the constant term must be equal to the value of the limit: 1c=4    c=14    c=31-c = 4 \implies c = 1-4 \implies c=-3

Step 5: Calculate the value of a+b+c|a+b+c|. We have a=1a=1, b=1b=-1, and c=3c=-3. a+b+c=1+(1)+(3)=113=3a+b+c = 1 + (-1) + (-3) = 1 - 1 - 3 = -3 a+b+c=3=3|a+b+c| = |-3| = 3