Question
Question: If limit given as \(\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{-nx}}+{{e}^{nx}}-2\cos \dfrac{nx...
If limit given as x→0lim(sinx−tanx)e−nx+enx−2cos2nx−kx2, exists and finite. Then possible values of ‘n’ and ‘k’ is:
(a) k = 3, n = 3
(b) k = 3, n = -2
(c) k = 5, n = 2
(d) k = -5, n = 2
Explanation
Solution
Hint: Use expansion of all the functions given here ie. enx, e−nx, cos2nx, sinx and tan x. Use the given condition to find n and k i.e. the limit is finite and does exist.
Complete step-by-step answer:
We have given that x→0lim(sinx−tanx)e−nx+enx−2cos2nx−kx2 exists and finite and need to determine n =? and k =?
We have x→0limsinx−tanxe−nx+enx−2cos2nx−kx2.....(i)
Let us put the limit x→0 directly to numerator and denominator, we get,
x→0limsinx−tanxe−nx+enx−2cos2nx−kx2
=sin(0o)−tan(0o)e0+e−0−2cos0−k(0)
Now, we know that