Question
Question: If $\lim_{x \to \lambda} \left(2-\frac{\lambda}{x}\right)^{\lambda \tan\left(\frac{\pi x}{2\lambda}\...
If limx→λ(2−xλ)λtan(2λπx)=e1, then λ is equal to -

A
−π
B
π
C
2π
D
−π2
Answer
2π
Explanation
Solution
The limit is of the form 1∞. The given limit limx→λ[f(x)]g(x) can be evaluated as elimx→λg(x)[f(x)−1]. Here, f(x)=2−xλ and g(x)=λtan(2λπx). The limit of the exponent is L=limx→λλtan(2λπx)(1−xλ)=limx→λxcot(2λπx)λ(x−λ). Applying L'Hopital's Rule to the 00 form, we get L=cot(2λπx)−xcsc2(2λπx)2λπλx=λ. Evaluating this limit gives L=0−λ(1)2(2λπ)λ=−π/2λ=−π2λ. Given limit is eL=e1=e−1, so L=−1. Equating the exponent limits: −π2λ=−1⟹λ=2π.