Solveeit Logo

Question

Question: If $\lim_{x \to \lambda} \left(2-\frac{\lambda}{x}\right)^{\lambda \tan\left(\frac{\pi x}{2\lambda}\...

If limxλ(2λx)λtan(πx2λ)=1e\lim_{x \to \lambda} \left(2-\frac{\lambda}{x}\right)^{\lambda \tan\left(\frac{\pi x}{2\lambda}\right)} = \frac{1}{e}, then λ\lambda is equal to -

A

π-\pi

B

π\pi

C

π2\frac{\pi}{2}

D

2π-\frac{2}{\pi}

Answer

π2\frac{\pi}{2}

Explanation

Solution

The limit is of the form 11^\infty. The given limit limxλ[f(x)]g(x)\lim_{x \to \lambda} [f(x)]^{g(x)} can be evaluated as elimxλg(x)[f(x)1]e^{\lim_{x \to \lambda} g(x) [f(x)-1]}. Here, f(x)=2λxf(x) = 2 - \frac{\lambda}{x} and g(x)=λtan(πx2λ)g(x) = \lambda \tan\left(\frac{\pi x}{2\lambda}\right). The limit of the exponent is L=limxλλtan(πx2λ)(1λx)=limxλλ(xλ)xcot(πx2λ)L = \lim_{x \to \lambda} \lambda \tan\left(\frac{\pi x}{2\lambda}\right) \left(1 - \frac{\lambda}{x}\right) = \lim_{x \to \lambda} \frac{\lambda (x - \lambda)}{x \cot\left(\frac{\pi x}{2\lambda}\right)}. Applying L'Hopital's Rule to the 00\frac{0}{0} form, we get L=λcot(πx2λ)xcsc2(πx2λ)π2λx=λL = \frac{\lambda}{\cot(\frac{\pi x}{2\lambda}) - x \csc^2(\frac{\pi x}{2\lambda}) \frac{\pi}{2\lambda}} \Big|_{x=\lambda}. Evaluating this limit gives L=λ0λ(1)2(π2λ)=λπ/2=2λπL = \frac{\lambda}{0 - \lambda(1)^2(\frac{\pi}{2\lambda})} = \frac{\lambda}{-\pi/2} = -\frac{2\lambda}{\pi}. Given limit is eL=1e=e1e^L = \frac{1}{e} = e^{-1}, so L=1L = -1. Equating the exponent limits: 2λπ=1    λ=π2-\frac{2\lambda}{\pi} = -1 \implies \lambda = \frac{\pi}{2}.