Question
Question: If \(\lim_{x \rightarrow \infty}\left\lbrack \frac{x^{3} + 1}{x^{2} + 1} - (ax + b) \right\rbrack = ...
If limx→∞[x2+1x3+1−(ax+b)]=2, then
A
a=1andb=1
B
a=1 and b=−1
C
a=1andb=−2
D
a=1 and b=2
Answer
a=1andb=−2
Explanation
Solution
x→∞lim(x2+1x3+1−(ax+b))=2
⇒x→∞lim(x2+1x3(1−a)−bx2−ax+(1−b))=2
⇒ limx→∞[x3(1−a)−bx2−ax+(1−b)]=2(x2+1).
Comparing the coefficients of both sides, 1−a=0 and −b=2 or a=1,b=−2.