Solveeit Logo

Question

Question: If \(\lim_{x \rightarrow 3^{+}}f(x) = 0\) is continuous at x = 0, then the value of ‘a’ will be...

If limx3+f(x)=0\lim_{x \rightarrow 3^{+}}f(x) = 0 is continuous at x = 0, then the value of ‘a’ will be

A

8

B

–8

C

4

D

None of these

Answer

8

Explanation

Solution

limx0f(x)limx0(2sin22x(2x)2)4=8\lim _ { x \rightarrow 0 ^ { - } } f ( x ) \lim _ { x \rightarrow 0 ^ { - } } \left( \frac { 2 \sin ^ { 2 } 2 x } { ( 2 x ) ^ { 2 } } \right) 4 = 8

and limx0+f(x)=limx0+[(16+x)+4]=8\lim _ { x \rightarrow 0 ^ { + } } f ( x ) = \lim _ { x \rightarrow 0 ^ { + } } [ ( \sqrt { 16 + \sqrt { x } } ) + 4 ] = 8

Hence a=8a = 8.