Solveeit Logo

Question

Question: If $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left( \frac{n^2 + (k-1)^2}{n^2 + k^2} \right...

If limn1nk=1nln(n2+(k1)2n2+k2)\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left( \frac{n^2 + (k-1)^2}{n^2 + k^2} \right) exists and is equal to L. The absolute value of [L] is (where [.] denotes greatest integer function)

Answer

0

Explanation

Solution

The given limit is L=limn1nk=1nln(n2+(k1)2n2+k2)L = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left( \frac{n^2 + (k-1)^2}{n^2 + k^2} \right).

We can use the property of logarithms ln(a/b)=lnalnb\ln(a/b) = \ln a - \ln b to rewrite the term inside the sum: ln(n2+(k1)2n2+k2)=ln(n2+(k1)2)ln(n2+k2)\ln \left( \frac{n^2 + (k-1)^2}{n^2 + k^2} \right) = \ln(n^2 + (k-1)^2) - \ln(n^2 + k^2).

Let f(k)=ln(n2+k2)f(k) = \ln(n^2 + k^2). Then the term in the sum is f(k1)f(k)f(k-1) - f(k). The sum becomes k=1n[f(k1)f(k)]\sum_{k=1}^{n} [f(k-1) - f(k)]. This is a telescoping sum: k=1n[f(k1)f(k)]=[f(0)f(1)]+[f(1)f(2)]++[f(n1)f(n)]\sum_{k=1}^{n} [f(k-1) - f(k)] = [f(0) - f(1)] + [f(1) - f(2)] + \dots + [f(n-1) - f(n)] =f(0)f(n)= f(0) - f(n).

Now we evaluate f(0)f(0) and f(n)f(n): f(0)=ln(n2+02)=ln(n2)f(0) = \ln(n^2 + 0^2) = \ln(n^2). f(n)=ln(n2+n2)=ln(2n2)f(n) = \ln(n^2 + n^2) = \ln(2n^2).

The sum is f(0)f(n)=ln(n2)ln(2n2)=ln(n22n2)=ln(12)=ln2f(0) - f(n) = \ln(n^2) - \ln(2n^2) = \ln\left(\frac{n^2}{2n^2}\right) = \ln\left(\frac{1}{2}\right) = -\ln 2.

The expression inside the limit is 1nk=1n[ln(n2+(k1)2)ln(n2+k2)]=1n(ln2)=ln2n\frac{1}{n} \sum_{k=1}^{n} [\ln(n^2 + (k-1)^2) - \ln(n^2 + k^2)] = \frac{1}{n} (-\ln 2) = -\frac{\ln 2}{n}.

Now we compute the limit LL: L=limnln2nL = \lim_{n \to \infty} -\frac{\ln 2}{n}. Since ln2\ln 2 is a constant, and limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0, we have: L=(ln2)×limn1n=(ln2)×0=0L = -(\ln 2) \times \lim_{n \to \infty} \frac{1}{n} = -(\ln 2) \times 0 = 0.

So, L=0L = 0. The question asks for the absolute value of [L][L], where [.][.] denotes the greatest integer function. [L]=[0]=0[L] = [0] = 0. The absolute value of [L][L] is [L]=0=0|[L]| = |0| = 0.