Question
Question: If $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left( \frac{n^2 + (k-1)^2}{n^2 + k^2} \right...
If limn→∞n1∑k=1nln(n2+k2n2+(k−1)2) exists and is equal to L. The absolute value of [L] is (where [.] denotes greatest integer function)

0
Solution
The given limit is L=limn→∞n1∑k=1nln(n2+k2n2+(k−1)2).
We can use the property of logarithms ln(a/b)=lna−lnb to rewrite the term inside the sum: ln(n2+k2n2+(k−1)2)=ln(n2+(k−1)2)−ln(n2+k2).
Let f(k)=ln(n2+k2). Then the term in the sum is f(k−1)−f(k). The sum becomes ∑k=1n[f(k−1)−f(k)]. This is a telescoping sum: ∑k=1n[f(k−1)−f(k)]=[f(0)−f(1)]+[f(1)−f(2)]+⋯+[f(n−1)−f(n)] =f(0)−f(n).
Now we evaluate f(0) and f(n): f(0)=ln(n2+02)=ln(n2). f(n)=ln(n2+n2)=ln(2n2).
The sum is f(0)−f(n)=ln(n2)−ln(2n2)=ln(2n2n2)=ln(21)=−ln2.
The expression inside the limit is n1∑k=1n[ln(n2+(k−1)2)−ln(n2+k2)]=n1(−ln2)=−nln2.
Now we compute the limit L: L=limn→∞−nln2. Since ln2 is a constant, and limn→∞n1=0, we have: L=−(ln2)×limn→∞n1=−(ln2)×0=0.
So, L=0. The question asks for the absolute value of [L], where [.] denotes the greatest integer function. [L]=[0]=0. The absolute value of [L] is ∣[L]∣=∣0∣=0.