Question
Mathematics Question on limits and derivatives
If limx→∞(x+1x2+x+1−ax−b) = 4, then
a = 1, b = 4
a = 1, b = - 4
a = 2, b = - 3
a = 2, b = 3
a = 1, b = - 4
Solution
PLAN (∞∞) form
lim_{ x \to \infty} \frac{a_0 x^n + a_1 x^{n - 1} + .... + a_n}{ b_0 x^m + b_1 x^{m - 1} + .... + b_m} = \Bigg \\{ \begin{array}
\ 0, \\\
\frac{a_0}{b_0}. \\\
\+ \infty, \\\
\- \infty, \\\
\end{array} \begin{array}
\ if n < m \\\
if n = m \\\
if n > m \ and \ a_0 b_0 > 0 \\\
if n > m \ and \ a_0 b_0 < 0 \\\
\end{array}
Description of Situation As to make degree of
numerator equal to degree of denominator.
limx→∞(x+1x2+x+1−ax−b)=4
= ⇒limx→∞x+1x2+x+1−ax2−ax−bx−b=4
⇒limx→∞x+1x2(1−a)+x(1−a−b)+(1−b)=4
Here, we make degree of numerator
\hspace12mm = degree of denominator
∴1−a=0⇒a=1
and limx→∞x+1x(1−a−b)+(1−b)=4
⇒1−a−b=4
⇒b=−4 [∵(1−a)=0].