Solveeit Logo

Question

Mathematics Question on limits and derivatives

If limx(x2+x+1x+1axb)lim_{ x \to \infty} \bigg( \frac{x^2 + x + 1}{x + 1} - ax - b \bigg) = 4, then

A

a = 1, b = 4

B

a = 1, b = - 4

C

a = 2, b = - 3

D

a = 2, b = 3

Answer

a = 1, b = - 4

Explanation

Solution

PLAN () \bigg( \frac{\infty}{\infty}\bigg) form
lim_{ x \to \infty} \frac{a_0 x^n + a_1 x^{n - 1} + .... + a_n}{ b_0 x^m + b_1 x^{m - 1} + .... + b_m} = \Bigg \\{ \begin{array} \ 0, \\\ \frac{a_0}{b_0}. \\\ \+ \infty, \\\ \- \infty, \\\ \end{array} \begin{array} \ if n < m \\\ if n = m \\\ if n > m \ and \ a_0 b_0 > 0 \\\ if n > m \ and \ a_0 b_0 < 0 \\\ \end{array}
Description of Situation As to make degree of
numerator equal to degree of denominator.
limx(x2+x+1x+1axb)=4lim_{ x \to \infty} \bigg( \frac{x^2 + x + 1}{x + 1} - ax - b \bigg) = 4
= limxx2+x+1ax2axbxbx+1=4\Rightarrow lim_{ x \to \infty} \frac{x^2 + x + 1 - ax^2 - ax - bx - b}{ x + 1} = 4
limxx2(1a)+x(1ab)+(1b)x+1=4\Rightarrow lim_{ x \to \infty} \frac{ x^2 (1 - a) + x ( 1 - a - b) + (1 - b)}{ x + 1} = 4
Here, we make degree of numerator
\hspace12mm = degree of denominator
1a=0a=1\therefore 1 - a = 0 \Rightarrow a = 1
and limxx(1ab)+(1b)x+1=4lim_{x \to \infty} \frac{x ( 1 - a - b) + (1 - b)}{ x + 1} = 4
1ab=4\Rightarrow 1 - a - b = 4
b=4\Rightarrow b = - 4 [(1a)=0] [ \because (1 - a) = 0].