Solveeit Logo

Question

Mathematics Question on Limits

If limx1(5x+1)1/3(x+5)1/3(2x+3)1/2(x+4)1/2=m5n(2n)2/3,\lim_{x \to 1} \frac{(5x+1)^{1/3} - (x+5)^{1/3}}{(2x+3)^{1/2} - (x+4)^{1/2}} = \frac{m \sqrt{5}}{n (2n)^{2/3}}, where gcd(m,n)=1\text{gcd}(m, n) = 1, then 8m+12n8m + 12n is equal to _____

Answer

Consider the limit:
limx1(5x+1)1/3(x+5)1/3(2x+3)1/2(x+4)1/2.\lim_{x \to 1} \frac{(5x + 1)^{1/3} - (x + 5)^{1/3}}{(2x + 3)^{1/2} - (x + 4)^{1/2}}.
Using the first-order Taylor expansion for small differences around x=1x = 1:
Expand (5x+1)1/3(5x + 1)^{1/3} and (x+5)1/3(x + 5)^{1/3} around x=1x = 1:
(5x+1)1/3(5×1+1)1/3+13×(5)1/3×(x1),(5x + 1)^{1/3} \approx (5 \times 1 + 1)^{1/3} + \frac{1}{3} \times (5)^{1/3} \times (x - 1), (x+5)1/3(1+5)1/3+13×(1)1/3×(x1).(x + 5)^{1/3} \approx (1 + 5)^{1/3} + \frac{1}{3} \times (1)^{1/3} \times (x - 1).
The difference becomes: (5x+1)1/3(x+5)1/313(51/31)(x1).(5x + 1)^{1/3} - (x + 5)^{1/3} \approx \frac{1}{3} \left(5^{1/3} - 1\right) (x - 1).
Similarly, expand (2x+3)1/2(2x + 3)^{1/2} and (x+4)1/2(x + 4)^{1/2}:
(2x+3)1/2(2×1+3)1/2+12×(2)1/2×(x1),(2x + 3)^{1/2} \approx (2 \times 1 + 3)^{1/2} + \frac{1}{2} \times (2)^{1/2} \times (x - 1),
(x+4)1/2(1+4)1/2+12×(1)1/2×(x1).(x + 4)^{1/2} \approx (1 + 4)^{1/2} + \frac{1}{2} \times (1)^{1/2} \times (x - 1).
The difference becomes: (2x+3)1/2(x+4)1/212(21/21)(x1).(2x + 3)^{1/2} - (x + 4)^{1/2} \approx \frac{1}{2} \left(2^{1/2} - 1\right) (x - 1).
Substitute the expansions into the limit:
limx113(51/31)(x1)12(21/21)(x1)=13(51/31)12(21/21)=853×62/3.\lim_{x \to 1} \frac{\frac{1}{3} \left(5^{1/3} - 1\right) (x - 1)}{\frac{1}{2} \left(2^{1/2} - 1\right) (x - 1)} = \frac{\frac{1}{3} \left(5^{1/3} - 1\right)}{\frac{1}{2} \left(2^{1/2} - 1\right)} = \frac{8 \sqrt{5}}{3 \times 6^{2/3}}.
Comparing with the given expression:
m5n(2n)2/3    m=8,n=3.\frac{m \sqrt{5}}{n(2n)^{2/3}} \implies m = 8, \quad n = 3.
Calculating 8m+12n8m + 12n:
8m+12n=8×8+12×3=64+36=100.8m + 12n = 8 \times 8 + 12 \times 3 = 64 + 36 = 100.