Question
Mathematics Question on Limits
If limx→1(2x+3)1/2−(x+4)1/2(5x+1)1/3−(x+5)1/3=n(2n)2/3m5, where gcd(m,n)=1, then 8m+12n is equal to _____
Consider the limit:
limx→1(2x+3)1/2−(x+4)1/2(5x+1)1/3−(x+5)1/3.
Using the first-order Taylor expansion for small differences around x=1:
Expand (5x+1)1/3 and (x+5)1/3 around x=1:
(5x+1)1/3≈(5×1+1)1/3+31×(5)1/3×(x−1), (x+5)1/3≈(1+5)1/3+31×(1)1/3×(x−1).
The difference becomes: (5x+1)1/3−(x+5)1/3≈31(51/3−1)(x−1).
Similarly, expand (2x+3)1/2 and (x+4)1/2:
(2x+3)1/2≈(2×1+3)1/2+21×(2)1/2×(x−1),
(x+4)1/2≈(1+4)1/2+21×(1)1/2×(x−1).
The difference becomes: (2x+3)1/2−(x+4)1/2≈21(21/2−1)(x−1).
Substitute the expansions into the limit:
limx→121(21/2−1)(x−1)31(51/3−1)(x−1)=21(21/2−1)31(51/3−1)=3×62/385.
Comparing with the given expression:
n(2n)2/3m5⟹m=8,n=3.
Calculating 8m+12n:
8m+12n=8×8+12×3=64+36=100.