Question
Mathematics Question on Limits
If limx→0x2sinxax2ex−bloge(1+x)+cxe−x=1,then 16(a2+b2+c2) is equal to \\_\\_\\_\\_\\_.
The limit expression is:
limx→0x2sinxaxe+bloge(1+x)+cxe−x=1.
Expand each term in the numerator around x=0:
For axe, use the Taylor expansion:
axe=ax(1+x+2!x2+3!x3+⋯).
For bloge(1+x), use the expansion loge(1+x)=x−2x2+3x3−⋯:
bloge(1+x)=b(x−2x2+3x3+⋯).
For cxe−x, use the expansion e−x=1−x+2!x2−⋯:
cxe−x=cx(1−x+2x2−⋯).
Substitute these expansions into the numerator:
limx→0x3sinx(a−b+c)x+(2b−c+a)x2+(3a−2b+2c)x3+⋯.
Since sinx≈x as x→0, we rewrite the expression as:
limx→0x2a−b+c+(2b−c+a)x+(3a−2b+2c)x2+⋯=1.
By matching terms, we get:
c=b=0,2b−c+a=0.
Solving these equations, we find:
a=43,b=c=23.
Calculate a2+b2+c2:
a2+b2+c2=169+49+49=169+36+36=1681.
Thus, 16(a2+b2+c2)=81.