Solveeit Logo

Question

Mathematics Question on Limits

If limx0ax2exbloge(1+x)+cxexx2sinx=1,\lim_{x \to 0} \frac{ax^2 e^x - b \log_e (1 + x) + c x e^{-x}}{x^2 \sin x} = 1,then 16(a2+b2+c2)16(a^2 + b^2 + c^2) is equal to \\_\\_\\_\\_\\_.

Answer

The limit expression is:

limx0axe+bloge(1+x)+cxexx2sinx=1.\lim_{x \to 0} \frac{ax^e + b \log_e(1 + x) + cxe^{-x}}{x^2 \sin x} = 1.

Expand each term in the numerator around x=0x = 0:

For axeax^e, use the Taylor expansion:

axe=ax(1+x+x22!+x33!+).ax^e = ax \left( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \right).

For bloge(1+x)b \log_e(1 + x), use the expansion loge(1+x)=xx22+x33\log_e(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots:

bloge(1+x)=b(xx22+x33+).b \log_e(1 + x) = b \left( x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots \right).

For cxexcxe^{-x}, use the expansion ex=1x+x22!e^{-x} = 1 - x + \frac{x^2}{2!} - \cdots:

cxex=cx(1x+x22).cxe^{-x} = cx \left( 1 - x + \frac{x^2}{2} - \cdots \right).

Substitute these expansions into the numerator:

limx0(ab+c)x+(b2c+a)x2+(a3b2+c2)x3+x3sinx.\lim_{x \to 0} \frac{\left( a - b + c \right) x + \left( \frac{b}{2} - c + a \right) x^2 + \left( \frac{a}{3} - \frac{b}{2} + \frac{c}{2} \right) x^3 + \cdots}{x^3 \sin x}.

Since sinxx\sin x \approx x as x0x \to 0, we rewrite the expression as:

limx0ab+c+(b2c+a)x+(a3b2+c2)x2+x2=1.\lim_{x \to 0} \frac{a - b + c + \left( \frac{b}{2} - c + a \right) x + \left( \frac{a}{3} - \frac{b}{2} + \frac{c}{2} \right) x^2 + \cdots}{x^2} = 1.

By matching terms, we get:

c=b=0,b2c+a=0.c = b = 0, \quad \frac{b}{2} - c + a = 0.

Solving these equations, we find:

a=34,b=c=32.a = \frac{3}{4}, \quad b = c = \frac{3}{2}.

Calculate a2+b2+c2a^2 + b^2 + c^2:

a2+b2+c2=916+94+94=9+36+3616=8116.a^2 + b^2 + c^2 = \frac{9}{16} + \frac{9}{4} + \frac{9}{4} = \frac{9 + 36 + 36}{16} = \frac{81}{16}.

Thus, 16(a2+b2+c2)=81.16(a^2 + b^2 + c^2) = 81.